A graph polynomial for independent sets of bipartite graphs

Qi Ge Department of Computer Science University of Rochester

joint work with Daniel Štefankovič

EaGL III

Graph Polynomials

- Algebraic method for analyzing properties of graph
- Some graph polynomials
 - Chromatic polynomial
 - Reliability polynomial
 - Tutte polynomial

Tutte polynomial

A polynomial in two variables
Random cluster model

$$Z(G;q,\mu) = \sum_{S \subseteq E} q^{\kappa(S)} \mu^{|S|}$$

- sum over weighted subgraphs (V, S)
- each edge has weight μ
- each connected component has weight *q*

Tutte polynomial (cont.)

A new graph polynomial R_2

• The R_2 polynomial of a graph G = (V, E) $R_2(G; q, \mu) = \sum_{S \subseteq E} q^{\operatorname{rk}_2(S)} \mu^{|S|}$

- sum over weighted subgraphs (V, S)
- each edge has weight μ
- rk₂(S) is the rank of the adjacency matrix of
 (V, S) over F₂

A new graph polynomial R_2 (cont.)

A new graph polynomial R_2 (cont.)

 $R_2(G;q,\mu) = \sum q^{\mathrm{rk}_2(S)} \mu^{|S|}$ $S \subseteq E$

- Properties of the *R*² polynomial
 - number of matchings P(G; 0)

 $P(G;\mu) = R_2(G;\mu^{-1/2},\mu) = \sum_{S \subseteq E} \mu^{|S| - \mathrm{rk}_2(S)/2}$

• number of perfect matchings $P_2(G;0)$

 $P_1(G;t,\mu) = t^{|V|} R_2(G;1/t,\mu) \qquad P_2(G;\mu) = \mu^{-|V|/2} P_1(G;0,\mu)$

number of independent sets if the graph is bipartite

Polynomial R'_2

• The R'_2 polynomial of a bipartite graph $G = (U \cup W, E)$

$$R'_2(G;\lambda,\mu) = \sum_{S \subseteq E} \lambda^{\mathrm{rk}_2(S)} \mu^{|S|}$$

- each edge has weight μ
- $\operatorname{rk}_2(S)$ is the rank of the bipartite adjacency matrix of $(U \cup W, S)$ over \mathbb{F}_2

Polynomial R'_2 (cont.)

Polynomial R'_2 (cont.)

• For bipartite graphs $R_2(G; \lambda, \mu) = R'_2(G; \lambda^2, \mu)$

(Main Theorem) Let G = (U ∪ W, E) be a bipartite graph. The number of independent sets of G is given by

 $2^{|U|+|W|-|E|}R'_2(G;1/2,1)$

$$Q = \{(u, B) \mid u \in \mathbb{F}_{2}^{2}, B \in M_{2,2}(\mathbb{F}_{2}), B \leq A, u^{\mathrm{T}}B \equiv 0 \pmod{2}\}$$
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
$$\mathbb{P}(B) = \sum_{u:u^{\mathrm{T}}B \equiv 0 \pmod{2}} \frac{1}{|Q|} = \frac{2^{n_{1} - \mathrm{rk}_{2}(B)}}{|Q|} = \frac{2^{-\mathrm{rk}_{2}(B)}}{R'_{2}(G; 1/2, 1)}$$
$$\mathbb{P}(u) = \sum_{B:u^{\mathrm{T}}B \equiv 0 \pmod{2}} \frac{1}{|Q|} = \frac{2^{\#_{1}(A) - (n_{2} - k)}}{|Q|} = \frac{2^{k}}{\#BIS(G)}$$

 $|Q| = 2^{n_1} R'_2(G; 1/2, 1) = 2^{\#_1(A) - n_2} \# BIS(G)$

Complexity of exact evaluation of R_2^\prime

• FP

$$R'_2(G;\lambda,\mu) = \sum_{S \subseteq E} \lambda^{\mathrm{rk}_2(S)} \mu^{|S|}$$

- $\lambda \in \{0,1\}$
- $\mu = 0$
- $(\lambda, \mu) = (1/2, -1)$
- #P-hard
 - $\lambda = 1/2$ and $\mu \notin \{0, -1\}$
- #P-hard assuming GRH
 - $\lambda \notin \{0, 1, 1/2\}$ and $\mu \neq 0$

Approximate sampling problem

• Rank Weighted Subgraphs $RWS(\lambda, \mu)$

- instance: a bipartite graph $G = (U \cup W, E)$
- output: $S \subseteq E$ with probability

 $\mathbb{P}(S) \propto \lambda^{\mathrm{rk}_2(S)} \mu^{|S|}$

Markov chain Monte Carlo method
proper Markov chain
mixing time

Sing bond flip chain for $\operatorname{RWS}(\lambda, \mu)$ 1. pick an edge $e \in E$ at random 2. let $S = X_t \oplus \{e\}$ 3. set $X_{t+1} = S$ with probability $(1/2) \min\{1, \lambda^{\operatorname{rk}_2(S) - \operatorname{rk}_2(X_t)} \mu^{|S| - |X_t|}\}$ and $X_{t+1} = X_t$ with the remaining probability Question: for which classes of bipartite graphs does the single bond flip chain mix (in polynomial time)?

- The single bond flip chain for trees mixes in polynomial time
 - rk₂ is the size of the maximum matching
 - mixing time can be bounded by using the canonical paths method

Question: for which classes of bipartite graphs does the single bond flip chain mix (in polynomial time)?

There exists bipartite graphs for which the single bond flip chain needs exponential time to mix for λ = 1/2 and μ = 1 [Goldberg & Jerrum 2010]

• How about grids, planar graphs?

