A graph polynomial for independent sets of bipartite graphs

Qi Ge

Department of Computer Science
University of Rochester
joint work with Daniel Štefankovič
EaGL III

Graph Polynomials

- Algebraic method for analyzing properties of graph
- Some graph polynomials
- Chromatic polynomial
- Reliability polynomial
- Tutte polynomial

Tutte polynomial

- A polynomial in two variables
- Random cluster model

$$
Z(G ; q, \mu)=\sum_{S \subseteq E} q^{k(S)} \mu^{|S|}
$$

- sum over weighted subgraphs (V, S)
- each edge has weight μ
- each connected component has weight q

Tutte polynomial (cont.)

C_{3}

$$
Z\left(C_{3} ; q, \mu\right)=q^{3}+3 \mu q^{2}+\left(\mu^{3}+3 \mu^{2}\right) q
$$

A new graph polynomial R_{2}

- The R_{2} polynomial of a graph $G=(V, E)$

$$
R_{2}(G ; q, \mu)=\sum_{S \subseteq E} q^{\mathrm{rk}_{2}(S)} \mu^{|S|}
$$

- sum over weighted subgraphs (V, S)
- each edge has weight μ
- $\mathrm{rk}_{2}(S)$ is the rank of the adjacency matrix of (V, S) over \mathbb{F}_{2}

A new graph polynomial R_{2} (cont.)

$$
R_{2}\left(C_{3} ; q, \mu\right)=\left(\mu^{3}+3 \mu^{2}+3 \mu\right) q^{2}+1
$$

A new graph polynomial R_{2} (cont.)

$$
R_{2}(G ; q, \mu)=\sum_{S \subseteq E} q^{\mathrm{rk}}(S) \mu^{|S|}
$$

- Properties of the R_{2} polynomial
- number of matchings $P(G ; 0)$

$$
P(G ; \mu)=R_{2}\left(G ; \mu^{-1 / 2}, \mu\right)=\sum_{S \subseteq E} \mu^{|S|-k_{2}(S) / 2}
$$

- number of perfect matchings $P_{2}(G ; 0)$

$$
P_{1}(G ; t, \mu)=t^{|V|} R_{2}(G ; 1 / t, \mu) \quad P_{2}(G ; \mu)=\mu^{-|V| / 2} P_{1}(G ; 0, \mu)
$$

- number of independent sets if the graph is bipartite

Polynomial R_{2}^{\prime}

- The R_{2}^{\prime} polynomial of a bipartite graph $G=(U \cup W, E)$

$$
R_{2}^{\prime}(G ; \lambda, \mu)=\sum_{S \subseteq E} \lambda^{\mathrm{rk}_{2}(S)} \mu^{|S|}
$$

- each edge has weight μ
- $\mathrm{rk}_{2}(S)$ is the rank of the bipartite adjacency matrix of $(U \cup W, S)$ over \mathbb{F}_{2}

Polynomial R_{2}^{\prime} (cont.)

$$
R_{2}^{\prime}\left(K_{2,2} ; \lambda, \mu\right)=1+\lambda \mu^{4}+2 \lambda^{2} \mu^{2}+4 \lambda \mu^{2}+4 \lambda^{2} \mu^{3}+4 \lambda \mu
$$

- $\quad\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \lambda \mu$

Polynomial R_{2}^{\prime} (cont.)

- For bipartite graphs

$$
R_{2}(G ; \lambda, \mu)=R_{2}^{\prime}\left(G ; \lambda^{2}, \mu\right)
$$

- (Main Theorem) Let $G=(U \cup W, E)$ be a bipartite graph. The number of independent sets of G is given by

$$
2^{|U|+|W|-|E|} R_{2}^{\prime}(G ; 1 / 2,1)
$$

Main Theorem

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \quad Q=\left\{(u, B) \mid u \in \mathbb{F}_{2}^{2}, B \in M_{2,2}\left(\mathbb{F}_{2}\right), B \leq A, u^{\mathrm{T}} B \equiv 0(\bmod 2)\right\}
$$

Main Theorem

$$
Q=\left\{(u, B) \mid u \in \mathbb{F}_{2}^{2}, B \in M_{2,2}\left(\mathbb{F}_{2}\right), B \leq A, u^{\mathrm{T}} B \equiv 0 \quad(\bmod 2)\right\}
$$

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

$$
\mathbb{P}(B) ?
$$

$$
\begin{aligned}
& B=\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right) \\
& \mathbb{P}(B)=\sum_{u: u^{\mathrm{T}}} \sum_{B \equiv 0}^{(\bmod 2)} \\
&\left.\frac{1}{|Q|}=\frac{2^{n_{1}-\mathrm{rk}_{2}(B)}}{|Q|}=\frac{2^{-\mathrm{rk}_{2}(B)}}{1} \begin{array}{l}
0 \\
1
\end{array}\right) \\
& R_{2}^{\prime}(G ; 1 / 2,1)
\end{aligned}
$$

Main Theorem

$$
\left.\begin{array}{c}
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \quad Q=\left\{(u, B) \mid u \in \mathbb{F}_{2}^{2}, B \in M_{2,2}\left(\mathbb{F}_{2}\right), B \leq A, u^{\mathrm{T}} B \equiv 0(\bmod 2)\right\} \\
u=\binom{1}{0} \\
\mathbb{P}(u) \text { ? } \\
B: \sum_{B: u^{\mathrm{T}} B \equiv 0}(\bmod 2) \\
\text { full choices } \quad B=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) B=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \quad B=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
1
\end{array}\right)
$$

Main Theorem

$$
\begin{aligned}
& Q=\left\{(u, B) \mid u \in \mathbb{F}_{2}^{2}, B \in M_{2,2}\left(\mathbb{F}_{2}\right), B \leq A, u^{\mathrm{T}} B \equiv 0(\bmod 2)\right\} \\
& A=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \\
& \mathbb{P}(B)=\sum_{u: u^{\mathrm{T}}} \sum_{(\bmod 2)} \frac{1}{|Q|} \frac{2^{n_{1}-\mathrm{rk}_{2}(B)}}{|Q|}=\frac{2^{-\mathrm{rk}_{2}(B)}}{R_{2}^{\prime}(G ; 1 / 2,1)} \\
& \left.\mathbb{P}(u)=\sum_{B: u^{\mathrm{T}} B \equiv 0} \frac{1}{(\bmod 2)} \right\rvert\, \frac{2^{\#_{1}(A)-\left(n_{2}-k\right)}}{|Q|}=\frac{2^{k}}{\# B I S(G)} \\
& |Q|=2^{n_{1}} R_{2}^{\prime}(G ; 1 / 2,1)=2^{\#_{1}(A)-n_{2}} \# B I S(G)
\end{aligned}
$$

Complexity of exact evaluation of R_{2}^{\prime}

- FP

$$
\begin{aligned}
& \text { - } \lambda \in\{0,1\} \\
& \\
& \mu=0 \\
& \text { - }(\lambda, \mu)=(1 / 2,-1) \\
& \text { \#P-hard }
\end{aligned}
$$

- $\lambda=1 / 2$ and $\mu \notin\{0,-1\}$
- \#P-hard assuming GRH

- $\lambda \notin\{0,1,1 / 2\}$ and $\mu \neq 0$

Approximate sampling problem

- Rank Weighted Subgraphs $\operatorname{RWS}(\lambda, \mu)$
- instance: a bipartite graph $G=(U \cup W, E)$
- output: $S \subseteq E$ with probability

$$
\mathbb{P}(S) \propto \lambda^{\mathrm{rk} 2(S)} \mu^{|S|}
$$

$\operatorname{RWS}(\lambda, \mu)$

- Markov chain Monte Carlo method
- proper Markov chain
- mixing time

Sing bond flip chain for $\operatorname{RWS}(\lambda, \mu)$

1. pick an edge $e \in E$ at random
2. let $S=X_{t} \oplus\{e\}$
3. set $X_{t+1}=S$ with probability

$$
(1 / 2) \min \left\{1, \lambda^{\mathrm{rk}}(S)-\mathrm{rk} 2\left(X_{t}\right) \mu^{|S|\left|-\left|X_{t}\right|\right.}\right\}
$$

and $X_{t+1}=X_{t}$ with the remaining probability

$\operatorname{RWS}(\lambda, \mu)$ (cont.)

Question: for which classes of bipartite graphs does the single bond flip chain mix (in polynomial time)?

- The single bond flip chain for trees mixes in polynomial time
- rk_{2} is the size of the maximum matching
- mixing time can be bounded by using the canonical paths method

$\operatorname{RWS}(\lambda, \mu)$ (cont.)

Question: for which classes of bipartite graphs does the single bond flip chain mix (in polynomial time)?

- There exists bipartite graphs for which the single bond flip chain needs exponential time to mix for $\lambda=1 / 2$ and $\mu=1 \quad$ [Goldberg \& Jerrum 2010]
- How about grids, planar graphs?

Thanks!

