
Based on joint work with Adam D. Smith (Penn State)

Bridging Shannon and Hamming:
Codes for computationally simple channels

Venkatesan Guruswami

Carnegie Mellon University

-- 3rd EaGL Theory Day ---

October 9, 2010

Outline

• Background & context

– Error models, Shannon & Hamming

– List decoding

• Computationally bounded channels

– Previous results (with “setup”)

• Our results

– Explicit optimal rate codes (for two simple channels)

• Proof tools & ideas

Two classic channel models

• Alice sends n bits

• Shannon: Binary symmetric channel BSCp

– Flips each bit independently with probability p

(error binomially distributed)

• Hamming: Worst-case (adversarial) errors ADVp

– Channel outputs arbitrary word within distance pn of input

Alice BobNoisy channel
010100100101 011100001001

m m?

Best possible “rate” of reliable information transmission?

How many bits can we communicate by sending n bits on channel?

Error-correcting codes

(Binary) code:

encoding C : {0,1}k  {0,1}n

– c = C(m)

• m = message

• c = codeword

Rate R = k/n

– information per bit of codeword

– Want R > 0 as k, n  

Idea/hope: codeword c  C can be determined

(efficiently) from noisy version r = c + e

– e unknown error vector obeying some “noise model”

c

r = c+e

Codewords well-separated

Shannon capacity limit

Suppose pn bits can get flipped,

p  [0,1/2) error fraction

• c  r = c + e, wt(e)  pn

Decoding region for c C has volume  2h(p)n

• h(p) = - p log2 p – (1-p) log2 (1-p), binary entropy function

c

Hamming ball

B(c,pn)

pn

possible r’s

 Disjoint decoding regions

• # codewords  2n / 2h(p)n

• Rate  1- h(p)

Good codes  Good sphere packings

Shannon’s theorem
Theorem: There exists a code C : {0,1}Rn {0,1}n of rate

R=1-h(p)- such that m, for e R Binom(n,p)

Pr [C(m)+e  m’  m B(C(m’),pn)] ≤ exp(-a n).

i.i.d errors is a strong assumption

• eg., errors often bursty…

What about worst-case errors?

- all we know is wt(e) ≤ pn

Various efficient (polytime encodable/decodable) constructions

• Concatenated codes

• LDPC codes*

• Polar codes

Worst-case errors

Answer: Unknown!

But it is strictly < 1-h(p)

– Rate  0 for p  ¼.

– Best known rate (existential)

• 1-h(2p)

Largest rate of binary code s.t. Hamming balls of

radius pn around them are fully disjoint?

Big price:

• for similar rate, can correct only  ½ # errors

for worst-case model

A plot

BSCp capacity =1-h(p)

Approachable efficiently

p

Advp lower bound

= 1-h(2p) [G.-V.]

Advp upper bounds (hand drawn)

rate R

Why care about worst-case errors?

• As computer scientists, we like to!

• “Extraneous” applications of codes

– Cryptography, complexity theory (pseudorandomness,
hardness amplification, etc.)

Communication: Modeling unknown or varying
channels

– Codes for probabilistic model may fail if stochastic
assumptions are wrong

• Eg. Concatenated codes for bursty errors

– Codes for worst-case errors robust against
variety of channels

Bridging Shannon & Hamming I

List decoding: Relax decoding goal; recover small list
of messages (that includes correct message m)

LDC Deco-

der
Advp

LDC(m) LDC(m)+e
m {

m1

m2 = m

...

mL

pn

LDC: {0,1}k → {0,1}n is (p,L)-list-decodable if

- every y{0,1}n is within distance

pn of  L codewords

y

List decoding & Shannon capacity

Thm [Zyablov-Pinkser’81,Elias’91]: W.h.p., a random code of
rate 1-h(p)- is (p,L)-list-decodable for list size L = 1/

 Packing of radius pn Hamming balls covering each
point  1/ times

[G.-Håstad-Kopparty’10]:

• Also true for random linear code

Is having a list useful?

Yes, for various reasons

• better than giving up,

• w.h.p. list size 1,

• fits the bill perfectly in complexity applications

• Versatile primitive (will see in this talk!)

Zyablov radius

Blokh-Zyablov radius
Optimal trade-off

R  1 - h(p)

Constructive:
Zyablov, Blokh-Zyablov:

[G.-Rudra’08,’09]

Polynomial-based

codes +

concatenation

Rate R

E
rr

o
r

F
ra

c
ti
o

n

Pre list decoding

Optimal Tradeoff

Closing this gap

is open

Unfortunately, no constructive result achieving

rate  1-h(p) is known for binary list decoding

Outline

• Background & context

– Error models, Shannon & Hamming

– List decoding

• Computationally bounded channels

– Previous results (with “setup”)

• Our results

– Explicit optimal rate codes (for two simple channels)

• Proof tools & ideas

Computationally limited channels

• Channel models that lie between adversarial

channels and specific stochastic assumptions

• [Lipton’94] : “simple” = simulatable by small circuit

– Natural processes may be mercurial, but perhaps not

arbitrarily malicious

– Eg. O(n2) boolean gates for block length n

• Covers models in literature such as AVCs.

– studied in [Ding-Gopalan-Lipton’06, Micali-Peikert-Sudan-Wilson’06]

Alice Bob
Computationally

“simple”

channel

010100100101 011100001001
m m

Computationally limited channels

Formally: channel class specified by

– Complexity of channel

– Error parameter p: channel introduces ≤ pn errors w.h.p.

Examples:

– Polynomial-size: circuits of size nb for known b

– Log-space: one-pass circuit using O(log n) bits of

memory

– Additive channel: XOR with arbitrary oblivious error

vector

Single code must work for all channels in class

Previous work

Need setup assumptions:

• [Lipton 1994]: shared secret randomness

– Encoder/decoder share random bits s hidden from

channel

• [Micali-Peikert-Sudan-Wilson 2006]: public key

– Bob, channel have Alice’s public key; only Alice has

private key

– Alice uses private key to encode

Alice BobNoisy channel
010100100101 011100001001m m

Private codes
With shared randomness, don’t even need any

computational assumption if we had optimal rate

list-decodable codes* [Langberg’04, Smith’07]

*(which we don’t)

DecAdvp
m mMAC LDC

t m1,t1
m2,t2
...

mL,tL
{

V

V

V

Idea: Alice authenticates m using s as key

• If MAC has forgery probability δ, then Bob fails to

uniquely decode m with probability ≤ L δ

• MAC tag can have tag & key length O(log n)

• O(log n) shared randomness

• negligible loss in rate

(Optimal rate) codes with no shared setup

1. Additive errors: efficient, uniquely decodable

codes that approach Shannon capacity (1-h(p))

– Previously: only inefficient constructions known via

random coding [Cziszar-Narayan’88,’89; Langberg’08]

– We also provide a simpler existence proof

Formally, explicit randomized code

C : {0,1}k x {0,1}r  {0,1}n of rate k/n=1-h(p)- &

efficient decoder Dec such that

m e, wt(e)  pn,

Prob [Dec(C(m,) + e)= m] > 1- o(1)

Our Results

Decoder doesn’t know

encoder’s random bits

Our Results

(Optimal rate) codes with no shared setup

2. Logspace errors: efficient list-decodable code

with optimal rate (approaching 1-h(p))

– Previously: no better than uniquely-decodable codes

– List decoding = decoder outputs L messages one of

which is m w.h.p. (not all close-by codewords)

3. Polynomial-time errors: efficient list-decodable

code with rate  1-h(p), assuming p.r.g.

Why list decoding?

Lemma: Unique decoding has rate

zero when p > ¼ even for simple

bit-fixing channel (which is O(1) space)

rate

p

Open: Unique decoding

past worst-case errors

for p < ¼ for low-space

online channels ?

The ¼ barrier

Lemma’s proof idea:

• Channel moves codeword c=C(m,) towards

random codeword c’=C(m’,’), flipping ci with

probability ½ when ci  c’i

– constant space

– expected fraction of flips  ¼

– Output distribution symmetric w.r.t. inversion of c

and c’

Technical Part

Additive/oblivious errors

Randomized code C : {0,1}k x {0,1}r  {0,1}n of

rate k/n=1-h(p)- & decoding function Dec s.t.

m e, wt(e)  pn,

Prob [Dec(C(m,) + e)= m] > 1- o(1)

New existence proof

Linear list-decodable code + “additive”

MAC (called Algebraic Manipulation Detection

code, [Cramer-Dodis-Fehr-Padro-Wichs’08])

List

Dec

Additive error

m
Linear

LDC {
V

V

V

m1,1,s1

m2,2,s2

...

mL,L,sL

m


e

AMD

code
small random

key

Decoder can disambiguate without knowing 

Key point: For fixed e, the additive offsets of the spurious

(mi,i,si) from (m,,s) are fixed.

Unlikely these L offsets cause forgery.

m,,s

Code scrambling:
a simple solution with shared randomness

24

Shared random permutation π of {1,...,n}

• Code REC of rate  1-h(p) to correct fraction p

random errors [eg. Forney’s concatenated codes]

• Encoding: c = π-1(REC(m))

• Effectively permutes e into random error vector

REC(m)

π-1(REC(m))

REC
REC(m)+ π(e)

π-1(REC(m))+e

REC decoder

π-1 π



additive error

e
m

π

m

Comment

• Similar solution works for adversarial errors Advp

• Shared randomness = (π, )

–  acts as one-time pad, making e independent of π

m

REC(m)

π-1(REC(m))

REC
m

REC(m)+ π(e)

π-1(REC(m))+e

REC decoder

Advp

+
c = π-1(REC(m))+ Δ

Δ +
c + e

Δ

π-1 π

s=(π, Δ)

Explicit codes for additive errors

(with no shared setup)

Explicit randomized code C : {0,1}k x {0,1}r  {0,1}n

of rate k/n=1-h(p)- & efficient decoder Dec s.t.

m e, wt(e)  pn,
Prob [Dec(C(m,) + e)= m] > 1- o(1)

Eliminating shared setup

Idea: Hide shared key (“control information”) in

codeword itself

• Use a control code to encode control info (to protect

it from errors)

• Ensure decoder can recover control info correctly

– Must hide its encoding in “random” locations of overall

codeword (and control info includes this data also!)

– But isn’t this the original problem?

• And doesn’t control code hurt the rate?

• With control info correctly recovered, can appeal to

shared randomness solution (unscramble & run

REC decoder)

To afford encoding control information 
without losing overall rate, have to keep it small,
say 2n bits long

•  can’t be uniformly random permutation

But, if we make  small, we can use very low-rate
code to safeguard it

• eg., encode it into n bits
(still negligible effect on overall rate)

• Weaker goal (rate << capacity), thus easier

Control code

Overall construction

• Two main pieces

– Scrambled “payload” codeword: π-1(REC(m)) + Δ

• π is a log2(n)-wise independent permutation,

• Δ is a log2(n)-wise independent bit string

• Broken into blocks of length log(n)

Overall construction
• Two main pieces

– Scrambled payload codeword: π-1(REC(m)) + Δ

– Control information: ω = (π, Δ,T)

• T is a (pseudorandom) subset of blocks in {1,..., n/log(n)}

• Encode ω via low-rate Reed-Solomon-code into “control blocks”

• Encode each control block via small LDC+AMD code

Standard “sampler”

Control/payload construction

• Two main pieces

– Scrambled payload codeword: π-1(REC(m)) + Δ

– Control information: ω = (π, Δ,T)

• Combine by interleaving according to T

Decoding idea

• First decode control information, block by block

• Given control info, unscramble payload part &

run REC decoder

Control info recovery

• Pseudorandomness of T  enough (  n) control

blocks have < (p+) errors.

• But decoder is not handed T

• So does not know which blocks are control blocks

• Decode each block up to radius p+

• By properties of “inner” LDC+AMD construction,

enough control blocks correctly decoded

• Random offset   payload blocks look random

• Far from every control codeword

• so very few mistaken for control blocks

 Reed-Solomon decoder recovers  correctly

Finishing decoding

• Control decoding successful  decoder knows ,

so can

• remove offset  and apply π,

• run REC decoder (which works for log2 n-wise

independent errors) on REC(m) + π(e)

• recover m w.h.p.

Online logspace channels

• Similar high level structure; details more complicated

• Use “pseudorandom” codes to hide location of

control information from channel

• Small codes whose output looks random to channel

- Efficiently decodable by (more powerful) decoder

• Ensures enough control blocks have few errors

• But channel can inject many “fake” legitimate looking

control blocks

• Overcome by resorting to list decoding

• recover small list {1, 2,…, L} containing true 

Online logspace channels:

Payload decoding

• Ensure channel’s error distribution is indistinguishable

(in online logspace) from an oblivious distribution

• How? Nisan’s PRG to produce offset  that fools channel

• Given correct control info, argue events that ensured

successful decoding in oblivious case also occur

w.h.p. against more powerful online logspace channel

• event  error is “well-distributed” for REC decoder

• Problem: this “well-distributed”-ness can’t be checked in

online logspace

• Solution: work with a weaker condition that can be checked

in online logspace (leads to worse o(1) failure bound)

SIZE(nb) channels

• Replace Nisan by appropriate efficient

pseudorandom generator for SIZE(nb) circuits

• Exists under computational assumptions (like

one-way functions)

• Analysis easier than online logspace case, as

one only needs polytime distinguisher

Summary

• List decoding allows communicating at optimal rate

even against adversarial errors, but explicit

constructions not known (for binary case)

• Bounding complexity of channel “new” way to

capture limited adversarial behavior

– well-motivated bridge between Shannon & Hamming

• Our results: Explicit optimal rate codes for

– additive errors

– List decoding against online logspace channels

Open questions

For unique decoding on online logspace channels

• Is better rate possible than adversarial channels

for p < ¼ ?

• Better rate upper bound than 1-h(p) for p < ¼ ?

Online adversarial channels

• Rate upper bound of min{1-4p,1-h(p)}

[Langberg-Jaggi-Dey’09]

• True trade-off ?

