Bridging Shannon and Hamming:
Codes for computationally simple channels

Venkatesan Guruswami

Carnegie Mellon University

Based on joint work with Adam D. Smith (Penn State)

-- 34 EaGL Theory Day ---
October 9, 2010

Outline

e Background & context
— Error models, Shannon & Hamming
— List decoding

o Computationally bounded channels
— Previous results (with “setup”)

e Our results
— Explicit optimal rate codes (for two simple channels)

e Proof tools & ideas

Two classic channel models

& ()

@, OO

O
O . 010100100101 011100001001 O
Alice Bob

 Alice sends n bits
« Shannon: Binary symmetric channel BSCy
— Flips each bit independently with probability p
(error binomially distributed)
« Hamming: Worst-case (adversarial) errors ADVp

— Channel outputs arbitrary word within distance pn of input

Best possible “rate” of reliable information transmission?
How many bits can we communicate by sending n bits on channel?

Error-correcting codes

(Binary) code:
encoding C: {0,1}x — {0,1}"
—c=C(m)
* M = message
e Cc = codeword

Codewords well-separated
Rate R = k/n W W P

— Information per bit of codeword
— WantR>0ask,n— x

|dea/hope: codeword ¢ € C can be determined
(efficiently) from noisy versionr =c + e
— e unknown error vector obeying some “noise model”

Shannon capacity limit

Hamming ball
Suppose pn bits can get flipped, B(e.pn)
p € [0,1/2) error fraction
eC—> r=c+e, wt(e)<pn
Decoding region for ¢ eC has volume ~ 2h®)n possible r’s

* h(p) =-plog, p — (1-p) log, (1-p), binary entropy function

~ Disjoint decoding regions ‘ ’
* # codewords < 2" / 2h(p)n *\
» Rate < 1- h(p) ’ ’

Good codes < Good sphere packings

Shannon’s theorem

Theorem: There exists a code C : {0,1}R"— {0,1}" of rate
R=1-h(p)-& such that vm, for e e Binom(n,p)

Pr[C(m)+e € U, . ,B(C(m’),pn)] < exp(-a, n).

Various efficient (polytime encodable/decodable) constructions

« Concatenated codes
e LDPC codes*

« Polar codes

I.i.d errors Is a strong assumption

* eg., errors often bursty... ‘.’
What about worst-case errors? \ ’
- all we know is wt(e) < pn "

Worst-case errors

Largest rate of binary code s.t. Hamming balls of
adius pn around them are 7ully disjoint?

ﬂ

Answer: Unknown! ’ ’
But it is strictly < 1-h(p) ’\
— Rate — 0 for p > V4. ‘ ’
— Best known rate (existential) ‘
e 1-h(2p)

Big price:
« for similar rate, can correct only ~ 2 # errors
for worst-case model

A plot

BSCyp capacity =1-h(p) |
Approachable efficiently |

Advp lower bound

=1-h(2p) [G-V] =1

Advp upper bounds (hand drawn) P

Why care about worst-case errors?

e As computer scientists, we like to!

e “Extraneous” applications of codes

— Cryptography, complexity theory (pseudorandomness,
hardness amplification, etc.)

Communication: Modeling unknown or varying
channels

— Codes for probabilistic model may fail if stochastic
assumptions are wrong
e Eg. Concatenated codes for bursty errors
— Codes for worst-case errors robust against
variety of channels

Bridging Shannon & Hamming |

List decoding: Relax decoding goal; recover small list

of messages (that includes correct message m)

LD +
m —»:|LDC LDC(m) - C(m)+e

Deco-
der

LDC: {0,1}k — {0,713 IS (p,L)-list-decodable if

- every ye{0,1}" is within distance
pn of < L codewords

O

O

List decoding & Shannon capacity

Thm [zyablov-Pinkser'81,Elias'91]: W.h.p., @ random code of

rate 1-h(p)-< is (p,L)-list-decodable for list size L = 1/¢
< Packing of radius pn Hamming balls covering each
point < 1/¢ times

[G.-Hastad-Kopparty'10]:
Also true for random /inear code

Is having a list useful?
Yes, for various reasons

* Dbetter than giving up,
w.h.p. list size 1,

fits the bill perfectly in complexity applications

« Versatile primitive (will see in this talk!)

Error Fraction

Unfortunately, no constructive result achieving
rate — 1-h(p) is known for binary list decoding

0.5

04t \

0.3

02 f

0.1

Zyablov radius
Blokh-Zyablov radius

Pre list decoding
Optimal Tradeoff

Closing this gap

Rate R

'
0.4 0.6 0.8 1

v

Optimal trade-off
R~1-h(p)

Constructive:
Zyablov, Blokh-Zyablov:

[G.-Rudra’08,'09]
Polynomial-based
codes +
concatenation

Outline

o Computationally bounded channels
— Previous results (with “setup”)

Computationally limited channels

« Channel models that lie between adversarial
channels and specific stochastic assumptions

Computationally
“simple”
channel

010100100101 011100001001

m —J{ Alice Bob}—m

- [Lipton’94] : “simple” = simulatable by small circuit

— Natural processes may be mercurial, but perhaps not
arbitrarily malicious

— Eg. O(n?) boolean gates for block length n
e Covers models in literature such as AVCs.

— studied in [Ding-Gopalan-Lipton’06, Micali-Peikert-Sudan-Wilson’06]

Computationally limited channels

Formally: channel class specified by
— Complexity of channel
— Error parameter p: channel introduces < pn errors w.h.p.

Examples:
— Polynomial-size: circuits of size n® for known b
— Log-space: one-pass circuit using O(log n) bits of
memory

— Additive channel: XOR with arbitrary oblivious error
vector

Single code must work for all channels in class

Previous work

Need setup assumptions:

- [Lipton 1994]: shared secret randomness

— Encoder/decoder share random bits s hidden from
channel

l s {0,1}

. 010100100101 011100001001 ‘

- [Micali-Peikert-Sudan-Wilson 2006]: public key

— Bob, channel have Alice’s public key; only Alice has
private key

— Alice uses private key to encode

Private codes
With shared randomness, don’t even need any

computational assumption If we had optimal rate
list-decodable codes™ [Langberg’ 04, Smith’07]

l s {0,1}'

Mz, ti{V
JMACI[LDC m Dec)f met—]|_m

mL,tL—>V

ldea. Alice authenticates m using s as key
« If MAC has forgery probability 6, then Bob fails to
uniguely decode m with probability <L &
MAC tag can have tag & key length O(log n)
* O(log n) shared randomness
* negligible loss in rate

*(which we donl)

Our Results

(Optimal rate) codes with no shared setup

1. Additive errors: efficient, uniquely decodable
codes that approach Shannon capacity (1-h(p))
— Previously: only inefficient constructions known via
random coding [Cziszar-Narayan’'88,'89; Langberg'08]
— We also provide a simpler existence proof

Formally, explicit randomized code
C :{0,1}*x {0,1} — {0,1}" of rate k/n=1-h(p)-c &

efficient decoder Dec such th Decoder doesn’t know
vm Ve, wt(e) < pn encoder’s random bits

Prob, [Dec(C(m,w) + €)=m] > 1- 0(1)

Our Results

(Optimal rate) codes with no shared setup

2. Logspace errors: efficient list-decodable code
with optimal rate (approaching 1-h(p))

— Previously: no better than uniquely-decodable codes

— List decoding = decoder outputs L messages one of
which is m w.h.p. (not all close-by codewords)

3. Polynomial-time errors: efficient list-decodable
code with rate = 1-h(p), assuming p.r.g.

Why list decoding?

Lemma: Unique decoding has rate
zero when p > ¥4 even for simple
bit-fixing channel (which is O(1) space)

rate

Open: Unique decoding
past worst-case errors

for p < ¥ for low-space |,
online channels ?

The Y4 barrier

Lemma’s proof idea.:

« Channel moves codeword c=C(m,®») towards
random codeword c'=C(m’,w’), flipping c; with
probability 2 when c; # C’

— constant space
— expected fraction of flips < V4

— Output distribution symmetric w.r.t. inversion of c
and ¢’

Technical Part

Additive/oblivious errors

Randomized code C : {0,1}*x {0,1}' — {0,1}" of
rate k/n=1-h(p)-¢ & decoding function Dec s.t.

vm Ve, wt(e) < pn,

Prob, [Dec(C(m,®w) + €)= m]> 1- 0(1)

New existence proof

Linear list-decodable code + “additive”
MAC (called Algebraic Manipulation Detection

COC

mn—
() =—

e, [Cramer-Dodis-Fehr-Padro-Wichs'08])

AMD
code

small random

key

m,®,S

Linear_,
LDC

<

LlSt mo 0)2,32—>
Dec

ML, ,S,=

Addltlve error

Decoder can disambiguate without knowing o

Key point: For fixed e, the additive offsets of the spurious
(m;,®,,s;) from (m,m,s) are fixed.

Unlikely these L offsets cause forgery.

Code scrambling:
a simple solution with shared randomness

T
m additive error m
/ REC e / REC decoder \
REC(m) REC(m)+ 11(e)
e "
m(REC(m)) a5 — T (REC(m))+e

Shared random permutation 1T of {1,...,n}

« Code REC of rate = 1-h(p) to correct fraction p
random errors [eg. Forney’s concatenated codes]

« Encoding: c¢=1*YREC(mM))
* Effectively permutes e into random error vector

Comment

» Similar solution works for adversarial errors Adv,
« Shared randomness = (11, A)
— A acts as one-time pad, making e independent of 1

m s=(r, A) m
REC / REC decoder
REC(M) REC{m)* T7(@)

5 N
TFHREC(M)) THREC(M))+e

D — L4
¢ = TRECm))F & Cre

Explicit codes for additive errors
(with no shared setup)

Explicit randomized code C : {0,1}x x {0,1}" — {0,1}"
of rate k/n=1-h(p)-¢ & efficient decoder Dec s.t.

vm Ve, wt(e) < pn,
Prob,, [Dec(C(m,®w) + €)= m]> 1- 0(1)

Eliminating shared setup

ldea: Hide shared key (“control information”) in
codeword itself

« Use a control code to encode control info (to protect
It from errors)

« Ensure decoder can recover control info correctly

— Must hide its encoding in “random” locations of overall
codeword (and control info includes this data also!)

— But isn’t this the original problem?
* And doesn’t control code hurt the rate?
« With control info correctly recovered, can appeal to

shared randomness solution (unscramble & run
REC decoder)

Control code

To afford encoding control information o
without losing overall rate, have to keep it small,
say £2n bits long

* ® can't be uniformly random permutation

But, if we make o small, we can use very low-rate
code to safeguard it

eg., encode it into en bits
(still negligible effect on overall rate)

« Weaker goal (rate << capacity), thus easier

Overall construction

 Two main pieces

— Scrambled “payload” codeword: m*(REC(m)) + A
* 1T is a log?(n)-wise independent permutation,
« Ais a log?(n)-wise independent bit string
* Broken into blocks of length log(n)

Capacity-

approaching code
| message m | .. that corrects t-
Sy wise indep. errors

Rt

REC(m)

t-wise
independent
permutation 7
of {1,..n}

Chop
into
blocks of
length
O(log(n))
bits

t-wise
independent
offset A

Overall construction

 Two main pieces

— Scrambled payload codeword: TT{(REC(m)) + A

— Control information: w = (1,4:F)

Standard “sampler”

* Tis a (pseudorandom) subset of blocks in {1,..., n/log(n)}

 Encode w via low-rate Reed-Solomon-code into “control blocks”

 Encode each control block via small LDC+AMD code

Control
information

flay), flag), ..., flag)

Encoding 1o handle
insertions/deletions

blocks of length —
O(log(N)) bits / /
.

Rate 1/eps
Reed-Solomon
code

constant-rate
code that

corrects p+eps
adversarial

errors

Control/payload construction

 Two main pieces
— Scrambled payload codeword: TT{(REC(m)) + A
— Control information: w = (m, A,T)

 Combine by interleaving accordingto T

""Payload" codeword : .Control info —

RS

] L]

' ' !

: / REC \ ' '

] L]

v REC(m) | ' : fley), floa), .., f{ﬂk}l
[7 —_— ! Encoding to handle

[} ' L]

| / o ' f.rl.fl:r:t]]| f.rz,fl.'_uc21 |a,'_.,f[a;,.]|
! | 7 (REC(m) " '

: ; /

y []

&

L[|

--

Final codeword

Decoding idea

 First decode control information, block by block

Given control info, unscramble payload part &
run REC decoder

""Payload" codeword : .Control info —

| [Nessage m | ns

/ — T : CONICRICH)

a_rl
7 e : Encoding to handle

T EL L LB
L]]

| {mﬁrrmj |"' ' : | Sl | ﬂ”‘i | "f[‘*“']|

T LIy [] /

T {REC(m)) + : |

& - - l
L]

Final codeword

Control info recovery

* Pseudorandomness of T = enough (= € n) control
blocks have < (p+¢) errors.

« But decoder is not handed T
S0 does not know which blocks are control blocks
« Decode each block up to radius p+e

« By properties of “inner” LDC+AMD construction,
enough control blocks correctly decoded

« Random offset A = payload blocks look random
* Far from every control codeword
« so0 very few mistaken for control blocks

— Reed-Solomon decoder recovers o correctly

Finishing decoding

« Control decoding successful = decoder knows o,
SO can

* remove offset A and apply T,

* run REC decoder (which works for log? n-wise
Independent errors) on REC(m) + 1r(e)

* recover m w.h.p.

Online logspace channels

Similar high level structure; details more complicated

Use “pseudorandom” codes to hide location of
control information from channel

« Small codes whose output looks random to channel

- Efficiently decodable by (more powerful) decoder

« Ensures enough control blocks have few errors

But channel can inject many “fake” legitimate looking
control blocks

« Overcome by resorting to list decoding
* recover small list {0, ®,,..., ® } containing true ®

Online logspace channels:
Payload decoding

* Ensure channel’s error distribution is indistinguishable
(in online logspace) from an oblivious distribution

« How? Nisan’'s PRG to produce offset A that fools channel
« Given correct control info, argue events that ensured

successful decoding in oblivious case also occur
w.h.p. against more powerful online logspace channel

 event = error is “well-distributed” for REC decoder

 Problem: this “well-distributed”-ness can’t be checked in
online logspace

o Solution: work with a weaker condition that can be checked
In online logspace (leads to worse o(1) failure bound)

SIZE(nP) channels

* Replace Nisan by appropriate efficient
pseudorandom generator for SIZE(n®) circuits

« EXists under computational assumptions (like
one-way functions)

« Analysis easier than online logspace case, as
one only needs polytime distinguisher

Summary

 List decoding allows communicating at optimal rate
even against adversarial errors, but explicit
constructions not known (for binary case)

* Bounding complexity of channel “new” way to
capture limited adversarial behavior

— well-motivated bridge between Shannon & Hamming

* Our results: Explicit optimal rate codes for

— additive errors
— List decoding against online logspace channels

Open questions

For unique decoding on online logspace channels

* |s better rate possible than adversarial channels
forp<¥%?

« Better rate upper bound than 1-h(p) for p < ¥4 ?

Online adversarial channels

« Rate upper bound of min{1-4p,1-h(p)}
[Langberg-Jaggi-Dey’09]

 True trade-off ?

