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Two classic channel models

• Alice sends n bits

• Shannon: Binary symmetric channel BSCp

– Flips each bit independently with probability p

(error binomially distributed)

• Hamming: Worst-case (adversarial) errors ADVp

– Channel outputs arbitrary word within distance pn of input

Alice BobNoisy channel
010100100101 011100001001

m m?

Best possible “rate” of reliable information transmission?

How many bits can we communicate by sending n bits on channel?



Error-correcting codes

(Binary) code:

encoding C : {0,1}k  {0,1}n

– c = C(m) 

• m = message

• c = codeword

Rate R = k/n

– information per bit of codeword

– Want R > 0 as k, n  

Idea/hope: codeword c  C can be determined  

(efficiently) from noisy version r = c + e

– e unknown error vector obeying some “noise model”

c

r = c+e

Codewords well-separated



Shannon capacity limit

Suppose pn bits can get flipped, 

p  [0,1/2) error fraction

• c  r = c + e,   wt(e)  pn

Decoding region for c C has volume  2h(p)n

• h(p) = - p log2 p – (1-p) log2 (1-p), binary entropy function

c

Hamming ball

B(c,pn)

pn

possible r’s

 Disjoint decoding regions 

• # codewords  2n / 2h(p)n

• Rate  1- h(p)

Good codes  Good sphere packings



Shannon’s theorem
Theorem: There exists a code C : {0,1}Rn {0,1}n of rate 

R=1-h(p)- such that m, for e R Binom(n,p)

Pr [ C(m)+e  m’  m B(C(m’),pn) ] ≤ exp(-a n).

i.i.d errors is a strong assumption

• eg., errors often bursty…

What about worst-case errors?

- all we know is wt(e) ≤ pn

Various efficient (polytime encodable/decodable) constructions 

• Concatenated codes 

• LDPC codes*

• Polar codes



Worst-case errors 

Answer: Unknown!

But it is strictly < 1-h(p)

– Rate  0 for p  ¼.

– Best known rate (existential)

• 1-h(2p)

Largest rate of binary code s.t. Hamming balls of 

radius pn around them are fully disjoint?

Big price:

• for similar rate, can correct only  ½ # errors 

for worst-case model



A plot 

BSCp capacity =1-h(p)

Approachable efficiently

p

Advp lower bound 

= 1-h(2p)   [G.-V.]

Advp upper bounds (hand drawn)

rate R



Why care about worst-case errors?

• As computer scientists, we like to!

• “Extraneous” applications of codes

– Cryptography, complexity theory (pseudorandomness, 
hardness amplification, etc.)

Communication: Modeling unknown or varying
channels

– Codes for probabilistic model may fail if stochastic 
assumptions are wrong

• Eg. Concatenated codes for bursty errors

– Codes for worst-case errors robust against 
variety of channels 



Bridging Shannon & Hamming I

List decoding: Relax decoding goal; recover small list 
of messages (that includes correct message m)

LDC Deco-

der
Advp

LDC(m) LDC(m)+e
m {

m1

m2 = m

...

mL

pn

LDC: {0,1}k → {0,1}n is (p,L)-list-decodable if

- every  y{0,1}n is within distance 

pn of  L codewords

y



List decoding & Shannon capacity

Thm [Zyablov-Pinkser’81,Elias’91]: W.h.p., a random code of 
rate 1-h(p)- is (p,L)-list-decodable for list size L = 1/

 Packing of radius pn Hamming balls covering each         
point  1/ times

[G.-Håstad-Kopparty’10]:

• Also true for random linear  code

Is having a list useful?

Yes, for various reasons 

• better than giving up,

• w.h.p. list size 1,

• fits the bill perfectly in complexity applications

• Versatile primitive (will see in this talk!)



Zyablov radius

Blokh-Zyablov radius
Optimal trade-off

R  1 - h(p)

Constructive:
Zyablov, Blokh-Zyablov:

[G.-Rudra’08,’09]

Polynomial-based 

codes +

concatenation

Rate R
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Pre list decoding

Optimal Tradeoff

Closing this gap

is open

Unfortunately, no constructive result achieving

rate  1-h(p) is known for binary list decoding
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Computationally limited channels

• Channel models that lie between adversarial 

channels and specific stochastic assumptions

• [Lipton’94] : “simple” = simulatable by small circuit

– Natural processes may be mercurial, but perhaps not 

arbitrarily malicious

– Eg. O(n2) boolean gates for block length n

• Covers models in literature such as AVCs.

– studied in [Ding-Gopalan-Lipton’06, Micali-Peikert-Sudan-Wilson’06]

Alice Bob
Computationally

“simple”

channel

010100100101 011100001001
m m



Computationally limited channels

Formally: channel class specified by 

– Complexity of channel

– Error parameter p: channel introduces ≤ pn errors w.h.p.

Examples:

– Polynomial-size: circuits of size nb for known b

– Log-space: one-pass circuit using O(log n) bits of 

memory

– Additive channel: XOR with arbitrary oblivious error 

vector

Single code must work for all channels in class



Previous work 

Need setup assumptions:

• [Lipton 1994]: shared secret randomness

– Encoder/decoder share random bits s hidden from 

channel

• [Micali-Peikert-Sudan-Wilson 2006]: public key

– Bob, channel have Alice’s public key;  only Alice has 

private key

– Alice uses private key to encode

Alice BobNoisy channel
010100100101 011100001001m m



Private codes  
With shared randomness, don’t even need any

computational assumption if we had optimal rate 

list-decodable codes* [Langberg’04, Smith’07] 

*(which we don’t)

DecAdvp
m mMAC LDC

t m1,t1
m2,t2
...

mL,tL
{

V

V

V

Idea: Alice authenticates m using  s as key

• If MAC has forgery probability δ, then Bob fails to 

uniquely decode m with probability ≤ L δ

• MAC tag can have tag & key length O(log n)

• O(log n) shared randomness

• negligible loss in rate



(Optimal rate) codes with no shared setup

1. Additive errors: efficient, uniquely decodable 

codes that approach Shannon capacity (1-h(p))

– Previously: only inefficient constructions known via

random coding [Cziszar-Narayan’88,’89; Langberg’08]

– We also provide a simpler existence proof

Formally, explicit randomized code 

C : {0,1}k x {0,1}r  {0,1}n of rate k/n=1-h(p)- &

efficient decoder Dec such that 

m e, wt(e)  pn, 

Prob [ Dec(C(m,) + e)= m ] > 1- o(1)

Our Results

Decoder doesn’t know 

encoder’s random bits



Our Results

(Optimal rate) codes with no shared setup

2. Logspace errors: efficient list-decodable code 

with optimal rate (approaching 1-h(p))

– Previously: no better than uniquely-decodable codes

– List decoding = decoder outputs L messages one of 

which is m w.h.p.           (not all close-by codewords)

3. Polynomial-time errors: efficient list-decodable

code with rate  1-h(p), assuming p.r.g.



Why list decoding? 

Lemma: Unique decoding has rate

zero when p > ¼  even for simple 

bit-fixing channel (which is O(1) space)

rate

p

Open: Unique decoding

past worst-case errors

for p < ¼ for low-space 

online channels ?



The ¼ barrier 

Lemma’s proof idea: 

• Channel moves codeword c=C(m,) towards 

random codeword c’=C(m’,’), flipping ci with 

probability ½ when ci  c’i

– constant space

– expected fraction of flips  ¼ 

– Output distribution symmetric w.r.t. inversion of c 

and c’



Technical Part

Additive/oblivious errors 

Randomized code C : {0,1}k x {0,1}r  {0,1}n of 

rate k/n=1-h(p)- & decoding function Dec s.t.

m e, wt(e)  pn, 

Prob [ Dec(C(m,) + e)= m ] > 1- o(1)



New existence proof 

Linear list-decodable code + “additive” 

MAC (called Algebraic Manipulation Detection 

code, [Cramer-Dodis-Fehr-Padro-Wichs’08] )

List

Dec

Additive error

m
Linear

LDC {
V

V

V

m1,1,s1

m2,2,s2

...

mL,L,sL

m


e

AMD

code
small random

key

Decoder can disambiguate without knowing 

Key point: For fixed e, the additive offsets of the spurious 

(mi,i,si) from (m,,s) are fixed. 

Unlikely these L offsets cause forgery.

m,,s



Code scrambling: 
a simple solution with shared randomness 

24

Shared random permutation π of {1,...,n}

• Code REC of rate  1-h(p) to correct fraction p

random errors [eg. Forney’s concatenated codes]

• Encoding:     c = π-1(REC(m))

• Effectively permutes e into random error vector

REC(m)

π-1(REC(m))

REC
REC(m)+ π(e)

π-1(REC(m))+e

REC decoder

π-1 π



additive error

e
m

π

m



Comment 

• Similar solution works for adversarial errors Advp

• Shared randomness = (π, )

–  acts as one-time pad, making e independent of π

m

REC(m)

π-1(REC(m))

REC
m

REC(m)+ π(e)

π-1(REC(m))+e

REC decoder

Advp

+
c = π-1(REC(m))+ Δ

Δ +
c + e

Δ

π-1 π

s=(π, Δ)



Explicit codes for additive errors

(with no shared setup) 

Explicit randomized code C : {0,1}k x {0,1}r  {0,1}n

of rate k/n=1-h(p)- & efficient decoder Dec s.t.

m e, wt(e)  pn, 
Prob [ Dec(C(m,) + e)= m ] > 1- o(1)



Eliminating shared setup

Idea: Hide shared key (“control information”) in

codeword itself 

• Use a control code to encode control info (to protect 

it from errors)

• Ensure decoder can recover control info correctly

– Must hide its encoding in “random” locations of overall 

codeword (and control info includes this data also!) 

– But isn’t this the original problem?

• And doesn’t control code hurt the rate?

• With control info correctly recovered, can appeal to 

shared randomness solution (unscramble & run 

REC decoder)



To afford encoding control information 
without losing overall rate, have to keep it small, 
say 2n bits long

•  can’t be uniformly random permutation

But, if we make  small, we can use very low-rate
code to safeguard it

• eg., encode it into n bits 
(still negligible effect on overall rate)

• Weaker goal (rate << capacity), thus easier

Control code



Overall construction

• Two main pieces

– Scrambled “payload” codeword: π-1(REC(m)) + Δ

• π is a log2(n)-wise independent permutation, 

• Δ is a log2(n)-wise independent bit string

• Broken into blocks of length log(n)



Overall construction
• Two main pieces

– Scrambled payload codeword: π-1(REC(m)) + Δ

– Control information: ω = (π, Δ,T) 

• T is a (pseudorandom) subset of blocks in {1,..., n/log(n)} 

• Encode ω via low-rate Reed-Solomon-code into “control blocks”

• Encode each control block via small LDC+AMD code

Standard “sampler”



Control/payload construction

• Two main pieces

– Scrambled payload codeword: π-1(REC(m)) + Δ

– Control information: ω = (π, Δ,T) 

• Combine by interleaving according to T



Decoding idea

• First decode control information, block by block

• Given control info, unscramble payload part & 

run REC decoder



Control info recovery

• Pseudorandomness of T  enough (  n) control 

blocks have < (p+) errors.

• But decoder is not handed T

• So does not know which blocks are control blocks

• Decode each block up to radius p+

• By properties of “inner” LDC+AMD construction, 

enough control blocks correctly decoded

• Random offset   payload blocks look random

• Far from every control codeword

• so very few mistaken for control blocks

 Reed-Solomon decoder recovers  correctly 



Finishing decoding

• Control decoding successful  decoder knows , 

so can

• remove offset  and apply π, 

• run REC decoder (which works for log2 n-wise 

independent errors) on REC(m) + π(e)

• recover m w.h.p.



Online logspace channels

• Similar high level structure; details more complicated

• Use “pseudorandom” codes to hide location of 

control information from channel

• Small codes whose output looks random to channel

- Efficiently decodable by (more powerful) decoder

• Ensures enough control blocks have few errors 

• But channel can inject many “fake” legitimate looking 

control blocks

• Overcome by resorting to list decoding

• recover small list {1, 2,…, L} containing true 



Online logspace channels: 

Payload decoding

• Ensure channel’s error distribution is indistinguishable 

(in online logspace) from an oblivious distribution

• How? Nisan’s PRG to produce offset  that fools channel

• Given correct control info, argue events that ensured 

successful decoding in oblivious case also occur 

w.h.p. against more powerful online logspace channel 

• event  error is “well-distributed” for REC decoder

• Problem: this “well-distributed”-ness can’t be checked in 

online logspace

• Solution: work with a weaker condition that can be checked 

in online logspace (leads to worse o(1) failure bound)



SIZE(nb) channels

• Replace Nisan by appropriate efficient 

pseudorandom generator for SIZE(nb) circuits

• Exists under computational assumptions (like 

one-way functions)

• Analysis easier than online logspace case, as 

one only needs polytime distinguisher



Summary

• List decoding allows communicating at optimal rate 

even against adversarial errors, but explicit 

constructions not known (for binary case)

• Bounding complexity of channel “new” way to 

capture limited adversarial behavior

– well-motivated bridge between Shannon & Hamming

• Our results: Explicit optimal rate codes for 

– additive errors

– List decoding against online logspace channels



Open questions

For unique decoding on online logspace channels

• Is better rate possible than adversarial channels 

for p < ¼ ?

• Better rate upper bound than 1-h(p) for p < ¼ ?

Online adversarial channels

• Rate upper bound of min{1-4p,1-h(p)} 

[Langberg-Jaggi-Dey’09]

• True trade-off ?


