Bridging Shannon and Hamming: Codes for computationally simple channels

Venkatesan Guruswami
Carnegie Mellon University

Based on joint work with Adam D. Smith (Penn State)
Outline

• Background & context
 – Error models, Shannon & Hamming
 – List decoding

• Computationally bounded channels
 – Previous results (with “setup”)

• Our results
 – Explicit optimal rate codes (for two simple channels)

• Proof tools & ideas
Two classic channel models

- Alice sends n bits
- **Shannon**: Binary symmetric channel BSC_p
 - Flips each bit independently with probability p
 (error binomially distributed)
- **Hamming**: Worst-case (adversarial) errors ADV_p
 - Channel outputs arbitrary word within distance pn of input

Best possible “rate” of reliable information transmission?
How many bits can we communicate by sending n bits on channel?
Error-correcting codes

(Binary) code:
encoding \(C : \{0,1\}^k \rightarrow \{0,1\}^n \)
 - \(c = C(m) \)
 - \(m = message \)
 - \(c = codeword \)

Rate \(R = k/n \)
 - information per bit of codeword
 - Want \(R > 0 \) as \(k, n \rightarrow \infty \)

Idea/hope: codeword \(c \in C \) can be determined (efficiently) from noisy version \(r = c + e \)
 - \(e \) unknown error vector obeying some “noise model”
Shannon capacity limit

Suppose pn bits can get flipped, $p \in [0,1/2)$ error fraction
- $c \rightarrow r = c + e$, $\text{wt}(e) \leq pn$

Decoding region for $c \in C$ has volume $\approx 2^{h(p)n}$
- $h(p) = -p \log_2 p - (1-p) \log_2 (1-p)$, binary entropy function

\approx Disjoint decoding regions
- # codewords $\leq 2^n / 2^{h(p)n}$
- Rate $\leq 1 - h(p)$

Good codes \Leftrightarrow Good sphere packings
Shannon’s theorem

Theorem: There exists a code $C : \{0,1\}^Rn \rightarrow \{0,1\}^n$ of rate $R=1-h(p)-\varepsilon$ such that $\forall m$, for $e \in_{R} Binom(n,p)$

$$\Pr \left[C(m)+e \in \bigcup_{m' \neq m} B(C(m'),pn) \right] \leq \exp(-a_\varepsilon n).$$

Various efficient (polytime encodable/decodable) constructions

- Concatenated codes
- LDPC codes
- Polar codes

i.i.d errors is a strong assumption

- eg., errors often bursty…

What about worst-case errors?

- all we know is $wt(e) \leq pn$
Worst-case errors

Largest rate of binary code s.t. Hamming balls of radius pn around them are fully disjoint?

Answer: Unknown!

But it is strictly $< 1 - h(p)$

- Rate $\rightarrow 0$ for $p \geq \frac{1}{4}$.
- Best known rate (existential)
 - $1 - h(2p)$

Big price:

- for similar rate, can correct only $\approx \frac{1}{2}$ # errors for worst-case model
A plot

BSC\(_p\) capacity = 1 - h(\(p\))
Approachable efficiently

Adv\(_p\) lower bound = 1 - h(2\(p\)) [G.-V.]

Adv\(_p\) upper bounds (hand drawn)
Why care about worst-case errors?

- As computer scientists, we like to!
- “Extraneous” applications of codes
 - Cryptography, complexity theory (pseudorandomness, hardness amplification, etc.)

Communication: Modeling *unknown* or *varying* channels
- Codes for probabilistic model may fail if stochastic assumptions are wrong
 - Eg. Concatenated codes for bursty errors
- Codes for worst-case errors robust against variety of channels
List decoding: Relax decoding goal; recover small list of messages (that includes correct message m)

$LDC: \{0,1\}^k \rightarrow \{0,1\}^n$ is (p,L)-list-decodable if

- every $y \in \{0,1\}^n$ is within distance pn of $\leq L$ codewords
List decoding & Shannon capacity

Thm [Zyablov-Pinkser’81, Elias’91]: W.h.p., a random code of rate $1-h(p)-\varepsilon$ is (p,L)-list-decodable for list size $L = \frac{1}{\varepsilon}$

\iff Packing of radius pn Hamming balls covering each point $\leq \frac{1}{\varepsilon}$ times

[G.-Håstad-Kopparty’10]:

- Also true for random linear code

Is having a list useful?

Yes, for various reasons

- better than giving up,
- w.h.p. list size 1,
- fits the bill perfectly in complexity applications
- Versatile primitive (will see in this talk!)
Unfortunately, no constructive result achieving rate $\rightarrow 1-h(p)$ is known for binary list decoding.

Optimal trade-off $R \approx 1 - h(p)$

Constructive:
Zyablov, Blokh-Zyablov:
[G.-Rudra’08,’09]
Polynomial-based codes + concatenation

Closing this gap is open
Outline

• Background & context
 – Error models, Shannon & Hamming
 – List decoding

• Computationally bounded channels
 – Previous results (with “setup”)

• Our results
 – Explicit optimal rate codes (for two simple channels)

• Proof tools & ideas
Computationally limited channels

• Channel models that lie between adversarial channels and specific stochastic assumptions

 • [Lipton’94]: “simple” = simulatable by small circuit
 – Natural processes may be mercurial, but perhaps not arbitrarily malicious
 – Eg. $O(n^2)$ boolean gates for block length n
 • Covers models in literature such as AVCs.
 – studied in [Ding-Gopalan-Lipton’06, Micali-Peikert-Sudan-Wilson’06]
Computationally limited channels

Formally: channel class specified by
 – Complexity of channel
 – Error parameter p: channel introduces $\leq pn$ errors w.h.p.

Examples:
 – Polynomial-size: circuits of size n^b for known b
 – Log-space: one-pass circuit using $O(\log n)$ bits of memory
 – Additive channel: XOR with arbitrary oblivious error vector

Single code must work for all channels in class
Previous work

Need *setup* assumptions:

• [Lipton 1994]: shared secret randomness
 – Encoder/decoder share random bits s hidden from channel

• [Micali-Peikert-Sudan-Wilson 2006]: public key
 – Bob, channel have Alice’s public key; only Alice has private key
 – Alice uses private key to encode
Private codes

With shared randomness, *don’t even need any computational assumption* if we had optimal rate *list-decodable* codes* [Langberg’04, Smith’07]

Idea: Alice *authenticates* \(m \) using \(s \) as key

- If MAC has forgery probability \(\delta \), then Bob fails to uniquely decode \(m \) with probability \(\leq L \delta \)
- MAC tag can have tag & key length \(O(\log n) \)
- \(O(\log n) \) shared randomness
- negligible loss in rate *(which we don’t)*
Our Results

(Optimal rate) codes with no shared setup

1. **Additive errors**: efficient, uniquely decodable codes that approach Shannon capacity ($1-h(p)$)

 – Previously: only inefficient constructions known via random coding [Csiszar-Narayan’88,’89; Langberg’08]

 – We also provide a simpler existence proof

Formally, explicit randomized code

$$C : \{0,1\}^k \times \{0,1\}^r \rightarrow \{0,1\}^n$$

of rate $k/n = 1-h(p)-\varepsilon$ & efficient decoder Dec such that

$$\forall m \forall e, \text{wt}(e) \leq pn,$$

$$\text{Prob}_\omega \left[Dec(C(m,\omega) + e) = m \right] > 1 - o(1)$$

Decoder doesn’t know encoder’s random bits
Our Results

(Optimal rate) codes with no shared setup

2. Logspace errors: efficient list-decodable code with optimal rate (approaching $1-h(p)$)
 - Previously: no better than uniquely-decodable codes
 - List decoding = decoder outputs L messages one of which is m w.h.p. \((\text{not all close-by codewords})\)

3. Polynomial-time errors: efficient list-decodable code with rate $\approx 1-h(p)$, assuming \(p.r.g.\)
Why list decoding?

Lemma: Unique decoding has rate zero when $p > \frac{1}{4}$ even for simple bit-fixing channel (which is $O(1)$ space)

Open: Unique decoding past worst-case errors for $p < \frac{1}{4}$ for low-space online channels?
The $\frac{1}{4}$ barrier

Lemma’s proof idea:

- Channel moves codeword $c = C(m, \omega)$ towards random codeword $c' = C(m', \omega')$, flipping c_i with probability $\frac{1}{2}$ when $c_i \neq c'_i$

 - constant space

 - expected fraction of flips $\leq \frac{1}{4}$

 - Output distribution symmetric w.r.t. inversion of c and c'
Technical Part

Additive/oblivious errors

Randomized code $C : \{0,1\}^k \times \{0,1\}^r \rightarrow \{0,1\}^n$ of rate $k/n=1-h(p)-\varepsilon$ & decoding function Dec s.t.

$\forall m \ \forall e, \ wt(e) \leq pn,$

$\operatorname{Prob}_\omega [Dec(C(m,\omega) + e)= m] > 1 - o(1)$
New existence proof

Linear list-decodable code + “additive” MAC (called **Algebraic Manipulation Detection code**, [Cramer-Dodis-Fehr-Padro-Wichs’08])

Decoder can disambiguate *without* knowing ω

Key point: For fixed e, the *additive offsets* of the spurious (m_i, ω_i, s_i) from (m, ω, s) are fixed.

Unlikely these L offsets cause forgery.
Code scrambling: a simple solution with shared randomness

Shared random permutation π of $\{1, \ldots, n\}$

- Code REC of rate $\approx 1 - h(p)$ to correct fraction p random errors [e.g., Forney’s concatenated codes]
- Encoding: $c = \pi^{-1}(\text{REC}(m))$
- Effectively permutes e into random error vector
Comment

- Similar solution works for adversarial errors Adv_p
- Shared randomness $s = (\pi, \Delta)$
 - Δ acts as one-time pad, making e independent of π

\[m \xrightarrow{\text{REC}} \text{REC}(m) \xrightarrow{\pi^{-1}} \pi^{-1}(\text{REC}(m)) \xrightarrow{\Delta} c = \pi^{-1}(\text{REC}(m)) + \Delta \]

\[\text{Adv}_p \]

\[m \xrightarrow{\text{REC}} \text{REC}(m) + \pi(e) \xrightarrow{\pi^{-1}} \pi^{-1}(\text{REC}(m)) + e \xrightarrow{\Delta} c + e \]
Explicit codes for additive errors (with no shared setup)

Explicit randomized code $C : \{0,1\}^k \times \{0,1\}^r \rightarrow \{0,1\}^n$ of rate $k/n=1-h(p)-\varepsilon$ & efficient decoder Dec s.t.

$\forall m \ \forall e, \ \text{wt}(e) \leq pn,$
$\text{Prob}_\omega [Dec(C(m,\omega) + e)= m] > 1 - o(1)$
Eliminating shared setup

Idea: Hide shared key ("control information") in codeword itself

• Use a control code to encode control info (to protect it from errors)

• Ensure decoder can recover control info correctly
 – Must hide its encoding in "random" locations of overall codeword (and control info includes this data also!)
 – But isn’t this the original problem?
 • And doesn’t control code hurt the rate?

• With control info correctly recovered, can appeal to shared randomness solution (unscramble & run REC decoder)
Control code

To afford encoding control information \(\omega \) without losing overall rate, have to keep it small, say \(\varepsilon^{2n} \) bits long

- \(\omega \) can’t be uniformly random permutation

But, if we make \(\omega \) small, we can use very low-rate code to safeguard it

- eg., encode it into \(\varepsilon n \) bits
 (still negligible effect on overall rate)

- Weaker goal (rate \(<< \) capacity), thus easier
Overall construction

• Two main pieces
 – Scrambled “payload” codeword: $\pi^{-1}(\text{REC}(m)) + \Delta$
 • π is a $\log^2(n)$-wise independent permutation,
 • Δ is a $\log^2(n)$-wise independent bit string
 • Broken into **blocks** of length $\log(n)$
Overall construction

- Two main pieces
 - Scrambled payload codeword: $\pi^{-1}(\text{REC}(m)) + \Delta$
 - Control information: $\omega = (\pi, \Delta, T)$

 - T is a (pseudorandom) subset of blocks in $\{1, \ldots, n/\log(n)\}$
 - Encode ω via low-rate Reed-Solomon-code into “control blocks”
 - Encode each control block via small LDC+AMD code

Standard “sampler”
Control/payload construction

• Two main pieces
 – Scrambled payload codeword: \(\pi^{-1}(REC(m)) + \Delta \)
 – Control information: \(\omega = (\pi, \Delta, T) \)

• Combine by interleaving according to \(T \)
Decoding idea

- First decode control information, block by block
- Given control info, unscramble payload part & run REC decoder
Control info recovery

- Pseudorandomness of $T \Rightarrow$ enough ($\approx \varepsilon n$) control blocks have $< (p+\varepsilon)$ errors.
- But decoder is not handed T
 - So does *not* know which blocks are control blocks
- Decode each block up to radius $p+\varepsilon$
 - By properties of “inner” LDC+AMD construction, enough control blocks correctly decoded
 - Random offset $\Delta \Rightarrow$ payload blocks look random
 - Far from every control codeword
 - So very few mistaken for control blocks

\Rightarrow Reed-Solomon decoder recovers ω correctly
Finishing decoding

• Control decoding successful ⇒ decoder knows ω, so can
 • remove offset Δ and apply π,
 • run REC decoder (which works for $\log^2 n$-wise independent errors) on $\text{REC}(m) + \pi(e)$
 • recover m w.h.p.
Online logspace channels

• Similar high level structure; details more complicated
• Use “pseudorandom” codes to hide location of control information from channel
 • Small codes whose output looks random to channel
 - Efficiently decodable by (more powerful) decoder
 • Ensures enough control blocks have few errors

• But channel can inject many “fake” legitimate looking control blocks
 • Overcome by resorting to list decoding
 • recover small list \(\{\omega_1, \omega_2, \ldots, \omega_L\} \) containing true \(\omega \)
Online logspace channels: Payload decoding

- Ensure channel’s error distribution is indistinguishable (in online logspace) from an oblivious distribution
 - How? Nisan’s PRG to produce offset Δ that fools channel
- Given correct control info, argue events that ensured successful decoding in oblivious case also occur w.h.p. against more powerful online logspace channel
 - event \approx error is “well-distributed” for REC decoder
 - Problem: this “well-distributed”-ness can’t be checked in online logspace
 - Solution: work with a weaker condition that can be checked in online logspace (leads to worse $o(1)$ failure bound)
SIZE(n^b) channels

- Replace Nisan by appropriate efficient pseudorandom generator for SIZE(n^b) circuits
 - Exists under computational assumptions (like one-way functions)
- Analysis easier than online logspace case, as one only needs polytime distinguisher
Summary

• List decoding allows communicating at optimal rate even against adversarial errors, but explicit constructions not known (for binary case)

• Bounding complexity of channel “new” way to capture limited adversarial behavior
 – well-motivated bridge between Shannon & Hamming

• Our results: Explicit optimal rate codes for
 – additive errors
 – List decoding against online logspace channels
Open questions

For unique decoding on online logspace channels

- Is better rate possible than adversarial channels for $p < \frac{1}{4}$?
- Better rate upper bound than $1 - h(p)$ for $p < \frac{1}{4}$?

Online adversarial channels

- Rate upper bound of $\min\{1 - 4p, 1 - h(p)\}$

 [Langberg-Jaggi-Dey’09]

- True trade-off?