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Two (related) aspects of Proof Complexity:

• Propositional Proof Complexity: Studies the

lengths of proofs of tautologies in various proof

systems.

• “Bounded Arithmetic”: Studies the power

of weak formal systems to prove theorems of

interest in computer science.

Both are intimately related to mainstream com-

plexity theory.

Here we start with the second aspect, and later

turn to the first.
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Goals for Mainstream Complexity Theory:

(1) Classify computational problems according

to complexity classes

(2) Separate (or collapse) complexity classes

Example Complexity Classes:

AC0 ⊂ AC0(2) ⊂ TC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ P ⊆ NP

Sad state of affairs concerning separation:

AC0(6) = TC0 = . . . = P = NP = PH ??

Analogous goals for Proof Complexity (Bounded

Arithmetic):

(1) Classify theorems (of interest in computer

science) according to the computational com-

plexity of the concepts needed to prove them.

(“Bounded Reverse Mathematics”)

(2) Separate (or collapse) formal theories for

various complexity classes.
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(1) Classify theorems (of interest in computer

science) according to the computational com-

plexity of the concepts needed to prove them.

What does this mean?

Start with complexity class P (= polytime)

The associated formal theory is called VP.

We are interested in theorems of form

∀X∃Y ϕ(X, Y ) (Y may be omitted)

where ϕ represents a polytime relation.

The proof must be feasibly contructive; i.e. it

provides a polytime function f(X) and a cor-

rectness proof of

ϕ(X, F(X))

The correctness proof must use only polytime

concepts; e.g. induction on a polytime predi-

cate.
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Examples of theorems with proofs in VP

Kuratowski’s Theorem

Hall’s Theorem

Menger’s Theorem

Extended Euclidean Algorithm

Linear Algebra (e.g. an n×n matrix either has

an inverse or linear dependent rows)

(Some may be provable with reasoning with

complexity classes below P)

Conjecture: Fermat’s Little Theorem is not

provable in VP.

∀X∀A∃D[(1 < A < X ∧ AX−1 6≡ 1 mod X) →

(1 < D < X ∧ D|X)]

If D can be found in polytime an efficient in-

teger factoring algorithm would result.
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Circuit Complexity Classes

Problems are specified by a (uniform) poly-size

family 〈Cn〉 of Boolean circuits.

Cn solves problems with input length n.

AC0: bounded depth, unbounded fan-in ∧,∨.

(Log time hierarchy for Alternating TMs)

Contains binary + but not parity or ×

AC0(2): allow unbounded fan-in parity gates.

Cannot count mod 3 [Raz 87],[Smo 87]

AC0(6): allow unbounded fan-in mod 6 gates.

Might be all of PH. (Contains ×??)

TC0: allow threshold gates.

Contains binary ×

NC1: circuits must be trees (formulas).
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Proof Complexity (Reverse Math) Ques-

tions:

(1) Given a theorem, what is the least com-

plexity class containing enough concepts to prove

the theorem?

Examples of universal principles: ∀Xϕ(X)

pigeonhole principle (TC0, not AC0)

planar st-connectiviey principle (paths connect-

ing diagonally opposite corners of a square must

cross)

AC0 or AC0(2)

discrete Jordan curve theorem (AC0 or AC0(2))

matrix identities (AB = I → BA = I)

(P – what about NC2?)
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Propositional Proof Systems

(Formulas built from ∧,∨,¬, x1, x2, ...,,parentheses)

Definition: A prop proof system is a polytime

function F from {0,1}∗ onto tautologies.

If F(X) = A then F is a proof of A.

We say F is poly-bounded if every tautology of

length n has a proof of length nO(1).

Easy Theorem: A poly-bounded prop proof

system exists iff NP = coNP.

Frege Systems (Hilbert style systems)

Finitely many axiom schemes and rule schemes.

Must be sound and implicationally complete.

All Frege systems are essentially equivalent.

Gentzen’s propositional LK is an example.

Embarrasing Fact: No nontrivial lower bounds

known on proof lengths for Frege systems.

(So maybe Frege systems are poly-bounded??)
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Hard tautologies from combinatorial

principles

Pigeonhole Principle: If n+1 pigeons are placed

in n holes, some hole has at least 2 pigeons.

Atoms pij (pigeon i placed in hole j)

1 ≤ i ≤ n + 1, 1 ≤ j ≤ n

¬PHPn+1
n is the conjunction of clauses:

(pi1 ∨ ... ∨ pin) (pigeon i placed in some hole)

1 ≤ i ≤ n + 1

(¬pik ∨ ¬pjk) (pigeons i, j not both in hole k)

1 ≤ i < j ≤ n + 1, 1 ≤ k ≤ n

¬PHPn+1
n is unsatisfiable: O(n3) clauses

Theorem (Buss) PHPn+1
n has polysize Frege

proofs. [NC1 can count pigeons and holes.]

Theorem (Ajtai) PHPn+1
n does not have poly-

size AC0-Frege proofs. [AC0 cannot count.]
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Formal Theories for Polytime Reasoning

Traditional Method: Modify PA (Peano Arith-

metic)

Variables x, y, z, ... range over N = 0,1,2, ...

Vocabulary +,×,0,1,=

Axioms: Peano postulates, recursive definition

of +,×, Induction axiom for every formula A(x)

[A(0) ∧ ∀x(A(x) → A(x + 1))] → ∀yA(y)

To get a theory for P we

• add new polytime function symbols and their

defining axioms

• restrict induction
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Two theories for polytime reasoning based on

PA (Peano Arithmetic):

Example 1: PV [Cook 75] A universal theory

with symbols for all polytime functions with ax-

ioms based on Cobham’s Theorem. Induction

becomes a derived result, via binary search.

Example 2: S1
2 [Buss 86] Add 3 new poly-

time function symbols and appropriate axioms,

and replace the PA Induction Scheme by PIND

scheme for Σb
1 formulas

The two theories are equivalent for ∀Σb
1 theo-

rems. [Buss 86]

CLAIM: Theories based on PA are not appro-

priate for small complexity classes such as AC0

and AC0(2) because x · y is not a function in

these classes.
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We base our theories on a Two-Sorted (“second-

order”) language L2
A [Zambella 96]

NOTE: The natural inputs for Turing machines

and circuits are finite strings.

“number” variables x, y, z... (range over N)

“string” variables X, Y, Z...
range over finite subsets of N

(arbitrary subsets of N for analysis)

Language L2
A = [0,1,+, ·, | |;∈,≤,=1,=2]

Standard model N2 = 〈N,finite(N)〉

0,1,+, ·,≤,= usual meaning over N

|X| =

{

1 + sup(X) if X 6= ∅
0 if X = ∅

y ∈ X (set membership) (Write X(y))

number terms s, t, u... defined as usual

only string terms are variables X, Y, Z, ...
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Notation: X(t) ≡ t ∈ X, t a term

Definitions: ΣB
0 formula: All number quanti-

fiers bounded.

No string quantifiers. (Free string variables al-

lowed.)

ΣB
1 formula has the form

∃Y1 ≤ t1...∃Yk ≤ tk ϕ

k ≥ 0, ϕ is ΣB
0 .

∃X ≤ t ϕ stands for ∃X(|X| ≤ t ∧ ϕ), where t

does not involve X.

Σ1
1 is the class of formulas

∃~Y ϕ ϕ ∈ ΣB
0

ΣB
i formulas begin with at most i blocks of

bounded string quantifiers ∃∀∃... followed by a

ΣB
0 formula.

Note: ΣB
i corresponds to strict Σ

1,b
i .
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Two-Sorted Complexity Classes

In general, number inputs x, y, z... are presented

in unary.

String inputs X, Y, Z, ... are presented as bit

strings.

Definition A relation R(~x, ~X) is in AC0 iff some

ATM (alternating Turing machine) accepts R

in time O(logn) with a constant number of

alternations. [Similarly for two-sorted P]

Representation Theorem [BIS,I,Wrathall]

(a) The ΣB
0 formulas ϕ(~x, ~X) represent

precisely the relations R(~x, ~X) in AC0.

(b) The ΣB
1 formulas represent

precisely the NP relations.

(c) The ΣB
i formulas, i ≥ 1, represent precisely

the Σ
p
i relations.
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Function Classes and Bit Graphs

Definition If C is a class of relations, then the

function class FC contains

(a) All p-bounded number-valued functions f(~x, ~X)

s.t. its graph

Gf(y, ~x, ~X) ≡ (y = f(~x, ~X))

is in C.

(b) All p-bounded string-valued functions F(~x, ~X)

such that its bit graph

BF (i, ~x, ~X) ≡ F(~x, ~X)(i)

is in C.

p-bounded means for some polynomial q(~x, ~X):

f(~x, ~X) ≤ q(~x, | ~X|)

|F(~x, ~X)| ≤ q(~x, | ~X|)
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All functions in FAC0 must have graphs (or bit

graphs) representable by ΣB
0 formulas

Example: Plus(X, Y ) = X + Y (binary +)

Plus ∈ FAC0

Plus(X, Y )(i) ≡ X(i) ⊕ Y (i) ⊕ Carry(X, Y, i)

Carry(i, X, Y ) ≡ ∃j < i[X(j) ∧ Y (j) ∧

∀k < i(j < k ⊃ (X(k) ∨ Y (k))]

NON-Examples:

X · Y (binary multiplication) NOT in FAC0.

Parity(X) ≡ X has an odd number of ones.

Parity /∈ AC0 (Ajtai, FSS)

Parity(X) NOT representable by a ΣB
0 for-

mula.

Hierarchy of Theories V0 ⊂ V1 ⊆ V2 ⊆ ...

All have underlying vocabulary L2
A

For i ≥ 1, Vi is “RSUV” isomorphic to Si
2.

17



2-BASIC Axioms for Vi, i ≥ 0 [Zam96]

B1. x + 1 6= 0

B2. x + 1 = y + 1 ⊃ x = y

B3. x + 0 = x

B4. x + (y + 1) = (x + y) + 1

B5. x · 0 = 0

B6. x · (y + 1) = (x · y) + x

B7. (x ≤ y ∧ y ≤ x) ⊃ x = y

B8. x ≤ x + y

B9. 0 ≤ x

B10. x ≤ y ∨ y ≤ x

B11. x ≤ y ↔ x < y + 1

B12. x 6= 0 ⊃ ∃y ≤ x(y + 1 = x)

L1. X(y) ⊃ y < |X|

L2. y + 1 = |X| ⊃ X(y)

SE. [|X| = |Y | ∧ ∀i < |X|(X(i) ↔ Y (i))] ⊃

X = Y

Also Vi needs ΣB
i -COMP (Comprehension)

∃Z ≤ y∀j < y[Z(j) ↔ ϕ(j, ~x, ~X)]

where ϕ(j, ~x, ~X) is a ΣB
i formula without Z.
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Theorem V0 proves

(because |X| = 1+ largest element of X...)

X-MIN

0 < |X| ⊃ ∃x < |X|(X(x) ∧ ∀y < x ¬X(y))

and X-IND

[X(0) ∧ ∀y < z(X(y) ⊃ X(y + 1))] ⊃ X(z)

Therefore for i = 0,1,2, ...

Vi proves (using ΣB
i -COMP)

ΣB
i -IND: [ϕ(0)∧∀x(ϕ(x) ⊃ ϕ(x+1))] ⊃ ∀zϕ(z)

and

ΣB
i -MIN: ∃xϕ(x) ⊃ ∃x[ϕ(x)∧¬∃y(y < x∧ϕ(y))]

where ϕ(x) is any ΣB
i -formula (with parame-

ters).

Fact: V0 is a conservative extension of I∆0.

Thus V0 proves all the usual properties of

x + y, x · y, |x|, Bit(i, x).

Fact: Vi is finitely axiomatizable (i ≥ 0).
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Theories “Capture” complexity classes

Definition: Let F(~x, ~X) be a string-valued func-

tion. We say that F is ΣB
1 -definable in a theory

T if there is a ΣB
1 -formula ϕ(~x, ~X, Y ) such that

(1) Y = F(~x, ~X) ↔ ϕ(~x, ~X, Y ) (semantically)

(2) T ⊢ ∀~x, ~X∃!Y ϕ(~x, ~X, Y )

(Similarly for number valued functions)

Definition: A theory VC captures a complex-

ity class C if the ΣB
1 -definable functions of VC

are precisely the functions in FC.

FACTS:

•V0 captures AC0

•V1 cpatures FP (polynomial time)

20



Propositional Translations of ΣB
0 -formulas

See [C 75, PW 87]

For each n ∈ N, ϕ(X)[n] is propositional

formula expressing ϕ(X) when |X| = n.

The propositional variables of ϕ(X)[n] are

pX
0 , . . . , pX

n−1

Example: Pal(X) says “X is a palindrome”.

∀y < |X|(X(y) ↔ X(|X| −· y −· 1))

Then Pal(X)[4] is

(pX
0 ↔ pX

3 )∧(pX
1 ↔ pX

2 )∧(pX
2 ↔ pX

1 )∧(pX
3 ↔ pX

0 )

Theorem: (i) If ϕ(X) is true then 〈ϕ(X)[n]〉

is a poly-size family of tautologies.

(ii) If V0 ⊢ ϕ(X) then 〈ϕ(X)[n]〉 has polysize

AC0-Frege proofs.
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Pairing Function: 〈x, y〉 is a term of L2
A.

〈x, y〉 =def (x + y)(x + y + 1) + 2y

V0 proves (x, y) 7→ 〈x, y〉 is one-one N×N → N.

A two-dimensional array is represented by a

string X. Define

X(i, j) = X(〈i, j〉)

Then X[i] is row i of the array X. We bit-define

the string function X[i] by

X[i](j) ↔ j < |X| ∧ X(i, j)

Example: PHP(y, X) (Pigeonhole Principle)

This is a ΣB
0 formula.

Think X(i, j) means pigeon i −→ hole j.

∀i ≤ y∃j < yX(i, j) ⊃
∃i ≤ y∃j ≤ y∃k < y(i < j ∧ X(i, k) ∧ X(j, k))

PHP(n, X)[〈n + 1, n〉] is very close to the Pi-

geonhole tautologies PHPn+1
n

Since these tautologies do not have polysize

AC0-Frege proofs (Ajtai) it follows that V0

does not prove PHP(y, X).
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V0: A universal conservative extension of V0

(In the spirit of PV.)

The vocabulary LFAC0 of V0 has function sym-

bols for all (and only) functions in FAC0. The

axioms of V0 consist entirely of universal for-

mulas, and comprise a version of 2-BASIC ax-

ioms of V0 together with the defining axioms

for all new function symbols.

Theorem: V0 is a conservative extension of

V0.

Claim: V0 is a minimal theory for AC0, just

as PV is a minmal theory for P.
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Witnessing (Finding Skolem functions)

Definition: Functions ~F witness ∃~Y φ(~x, ~X, ~Y )

in T if

T(~F ) ⊢ φ(~x, ~X, ~F(~x, ~X))

Theorem: (Witnessing) Suppose T is a uni-

versal theory which extends V0, and is defined

over a language L and suppose that for every

open formula α(i, ~x, ~X) and term t(~x, ~X) over

L there is a function symbol F in L such that

T ⊢ F(~x, ~X)(i) ↔ i < t ∧ α(i, ~x, ~X)

Then every theorem of T of the form ∃~Y α(~x, ~X, ~Y ),

where α is open, is witnessed in T by functions

in L.

Proof: Follows from the Herbrand Theorem.

Corollary: Every Σ1
1 theorem of V0 (and V0)

is witnessed in V0 by functions in LFAC0.
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Program:(with Phuong Nguyen) Introduce a

minimal cononical theory VC for each com-

plexity class C.

• VC has vocabulary L2
A.

• VC = V0 + {one axiom} (finitely axiomatiz-

able) [Nguyen: see Chapter 9]

• The ΣB
1 -definable functions in VC are those

in FC.

• VC has a universal convervative extension

VC in the style of PV.

class AC0 ⊂ AC0(2) ⊂ TC0 ⊆ NC1

theory V0 ⊂ V0(2) ⊂ VTC0 ⊆ VNC1

class L ⊆ NL ⊆ NC ⊆ P

theory VL ⊆ VNL ⊆ VNC ⊆ VP = TV0
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Theories VC for other classes C

Recall VC = V0 + AxiomC

where AxiomC = (CompleteC has a solution)

class theory CompleteC

AC0 V0 none

AC0(2) V0(2) Parity(X)

TC0 VTC0 numones(X)

NC1 VNC1 tree-MCV P
L VL UniConn(z, a, E)

NL VNL Conn(z, a, E)
P VP MCV P

Robustness Theorems

VTC0 ≃ ∆B
1 -CR [JP] (proved in [Nguyen])

VNC1 ≃ AID [Arai] (proved in [CM])

VNC1 ≃ ALV ≃ ALV ′ [Clote] (proved by [Nguyen])

VL = ΣB
0 -Rec [Zam97]

VNL = V-Krom [Kolokolova]
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Discrete Jordan Curve Theorem

[Nguyen/Cook LICS 07]

Original statement: A simple closed curve di-

vides the plane into exactly two connected com-

ponents.

(Hales gave a computer-verified proof involv-

ing 44,000 proof steps. His proof started with

a discrete version. Warmup for Kepler Conjec-

ture.)

Discrete Setting: The curve consists of edges

connecting grid points in the plane.

Case I: The curve is given as a set of edges

such that every grid point has degree 0 or 2.

(Then there may be more than 2 connected

components.)

Theorem: V0(2) proves the following:

If B is a set of edges forming a curve and p1, p2

are two points on different sides of B, and R
is a set of edges that connects p1 and p2, then

B and R intersect.
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Jordan Curve Cont’d

Theorem: [Buss] V0 cannot prove the previ-

ous version of JCT.

Case II: The curve is given as a sequence of

edges.

Theorem: V0 proves that a curve given by a

sequence of edges divides the plane into exactly

two connected components.

Lemma: (Provable in V0) For each column

in the planar grid, the edges of a closed curve

alternate in direction.

(The proof is difficult in V0, since no counting

is allowed, even mod 2.)
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The quantifier complexity of theorems

Simplist: ∀ΣB
0 : ∀~x∀ ~Xφ where φ is ΣB

0 .

Examples:

• pigeonhole principle

• first part of JCT (at least two components)

• matrix identities: AB = I ⇒ BA = I

∀ΣB
0 facts translate into polysize tautolgy

families. (Do they have polysize proofs???)

Next case: ∀ΣB
1 : ∀~x∀ ~X∃~Y ≤ ~tϕ where ϕ

is ΣB
0 .

Examples:

• second part of JCT (at most two compo-

nents)

• existence of function values Parity(X) etc.

• correctness of any prime recognition algo-

rithm

∀X∃Y, Z[(¬Prime(X)∧X 6= 1) → X = Y ·Z∧X, Y 6= 1]

(So by Witnessing, correctness cannot be proved

in VP unless factoring has a polytime algo-

rithm.)
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Theorems of higher quantifier complxity

∀ΣB
2 : ∀~x∀ ~X∃~Y ≤ ~t∀~Z ≤ ~uφ where φ is ΣB

0 .

Example:

• induction axiom (or length max principle) for

ΣB
1 formulas

• Prime Factorization Theorem for N

Prime Factorization can be proved in V1 (i.e.

S1
2) by the ΣB

1 length max principle [Jerabek]

Prime Factorization cannot be proved in VPV

(i.e. PV), unless products of two primes can be

factored in random polytime (KPT witnessing)

Robustness of Theories

Many theories (first and second order) have

been proposed for different complexity classes

C. For a given C, they all have essentially the

same ∀ΣB
0 and ∀ΣB

1 theorems. But they may

not have the same ∀ΣB
2 theorems.
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Bounded Reverse Analysis

Ferreira [88,94,00,05,06] introduced a two-sorted

system BTFA (Base Theory for Feasible Anal-

ysis) in which the functions definable on the

first sort ({0,1}∗) are polytime.

BTFA together with various versions of Weak

Konig’s Lemma can prove the Heine-Borel The-

orem for [0,1], and the max principle for con-

tinuous functions on [0,1].

Work to do: Tie in these theories more closely

with the complexity theory of real functions

[Friedman, Ko, Weirauch, Braverman, Kawa-

mura, ...]
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Open Questions

It should be easier to separate theories than

complexity classes. For example, if we can’t

show

AC0(6) 6= P

maybe we can show

V0(6) 6= VP

Classify basic theorems graph theory, linear al-

gebra, number theory, calculus according to

the complexity of the concepts needed for their

proof:

Hall’s Theroem, Menger’s Theorem, Kuratowski’s

Theorem, Cayley-Hamilton Theorem, Fermat’s

Little Theorem, Fundamental Theorem of Al-

gebra, Fundamental Theorem of Calculus, ...
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