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Private data analysis
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Collections of personal and sensitive data
e CENsus
o medical and public health data
e social networks
e recommendation systems
e trace data: search records, click data

e Iintrusion-detection



Meta Question

WHAT INFORMATION CAN BE RELEASED?

e T'wo conflicting goals
— utility: users can extract ”global” statistics

— privacy: individual information stays hidden



Related work

Other fields: huge amount of work
e in statistics (statistical disclosure limitation)
e in data mining (privacy-preserving data mining)

e largely: no precise privacy definition
(only security against specific attacks)

In cryptography (private data analysis)

e [Dinur Nissim 03, Dwork Nissim 04,
Chawla Dwork McSherry Smith Wee 05,
Blum Dwork McSherry Nissim 05,
Chawla Dwork McSherry Talwar 05,
Dwork McSherry Nissim Smith 06, ...]

e IigOTOUS privacy guarantees



Dzifferential privacy [DMNS06]

Intuition: Users learn the same thing about me
whether or not I participate in the census

Two databases are neighbors it they differ in one row

(arbitrarily complex information supplied by one person).

X1 X1

X9 XIQ
X = X/ =

Xn Xn

Privacy definition

Algorithm A 1is e-differentially private of
e for all neighbor databases x, x’
e for all sets of answers S

PrlA(z) € S] < (1+¢) - Pr[A(2') € S|




Properties of differential privacy

e-diff.
private A(x) | Users

X \
-
=

algorithm A

e ¢ is non-negligible (at least +).

o Composition: It Ay and A, are e-differentially private
then (Ay, As) is 2e-differentially private

e robust in the presence of arbitrary side information



What can we compute privately?

Research so far:
e Definitions [DiNi,DwNi,EGS,DMNS,DwNa,DKMMN,GKS]

e Function approximation

X1 \
X2 T~ e-diff. pompute f(x)
. - > private Users
Alz) = f(x),
/ A
Xn
— Protocols [DiNi,DwNi,BDMN,DMNS,NRS,BCDKMT]

— Impossibility results [DiNi,DMNS,DwNa,DwMT,DwY]
— Distributed protocols [DKMMN,BNiO)]

e Mechanism design [McSherry Talwar 07]
e Learning [Blum Dwork McSherry Nissim 05, KLNRS08|
e Releasing classes of functions [Blum Ligett Roth 08]

e Synthetic data [Machanavajjhala Kifer Abowd Gehrke Vilhuber 08]
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Road map

I. Function approximation
e Global sensitivity framework [DMNSO06]
e Smooth sensitivity framework [NRSO7]

e Sample-and-aggregate [NRS07]

1I. Learning
e Lixponential mechanism [MT07, KLNRSOS8]



Function Approxrimation

X1
X2 i: Trusted Compute f(x)

— agency Alz) — Users

/ A f(x) + noise "

For which functions f can we have:
e privacy: differential privacy [DMNSO06]

e utility: output A(x) is close to f(x)



Global sensitivity framework [DMNS06]

Intuition: f can be released accurately when it is

insensitive to individual entries x4, ..., x,.

Global sensitivity GS; = max  ||f(x) — f(2')|;.

neighbors x,x’
Ezample: GSaverage = % if z € 10,1

Theorem

If A(z) = f(z) + Lap( ) then A is e-diff. private.
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Global sensitivity framework [DMNS06]

Intuition: f can be released accurately when it is

insensitive to individual entries x4, ..., Z,.

Global sensitivity GS; = max  ||f(x) — f(2')|;.

neighbors x,x’
Ezample: GSaverage = % if z € ]0,1]™. Noise = Lap(i) .
Compare to: Estimating frequencies (e.g., proportion of

people with blue eyes) from n samples: sampling error %

Theorem

If A(z) = f(z) + Lap( ) then A is e-diff. private.

Functions with low global sensitivity
o Means, variances tfor data in a bounded interval
o histograms, contingency tables
o singular value decomposition
10



Instance-Based Noise

Big picture for global sensitivity framework:
e add enough noise to cover the worst case for f

e noise distribution depends only on f, not database x

Problem: tfor some functions that’s too much noise

Smooth sensitivity framework [Nissim Smith Raskhodnikova 07]:
noise tuned to database x

11



Local sensitivity

Local sensitivity LS;(x) = max  ||f(x) — f(a)]]

x’: neighbor of x

Reminder: GSy = max LS¢(z)

Example: median for 0 < x; <--- <z, <1, o0ddn

0 c e Tom—1 Tm, Tm+1 c. Ty 1
—o O O O O } >
median

I-Smedian(x) — max(xm — Im—1, Tm+1 — CEm)

Goal: Release f(z) with less noise when LS(x) is lower.
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Local sensitivity

Local sensitivity LS;(x) = max  ||f(x) — f(a)]]

x’: neighbor of x

Reminder: GS; = maxLS;(z)

Example: median for 0 < x; <--- <z, <1, o0ddn

0 xq c e Tom—1 Tm, Tm+1 c. Ty 1
—e /'l ?I |'\ ® } >
new median median new median
when z,, =0 when 7} =1

I-Smedian(x) — max(a:m — Im—1, Tm+1 — CEm)

Goal: Release f(z) with less noise when LS(x) is lower.
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Instance-based noise: first attempt

Noise magnitude proportional to LS¢(x) instead of GS;?
No! Noise magnitude reveals information.

Lesson: Noise magnitude must be an insensitive function.
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Smooth bounds on local sensitivily

Design sensitivity function S(x)

e S(x) is an e-smooth upper bound on LS(x) if:

— for all z: S(x) > LS¢(x)
— for all neighbors x,x’ :  S(z) < efS(2')
A
LS ()
>
Theorem

S(x)

If A(z) = f(z) + noise ( ) then A is &'-differentially private.

Erample: GSy is always a smooth bound on LS¢(z)
14
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Smooth Sensitivity

Smooth sensitivity S}(7)= max (LS 4 (y)e=distl=n))
y

Lemma

For every e-smooth bound S:  S}(x) < S(x) for all x.

Intuition: little noise when far from sensitive instances

low local

sensitivity

high local
sensitivity

/

database space
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Smooth Sensitivity

Smooth sensitivity S7(z)= max (LS 4 (y)e=distl=n))
y

Lemma

For every e-smooth bound S:  S}(x) < S(x) for all x.

Intuition: little noise when far from sensitive instances

low local
sensitivity
low smooth sensitivity Ih,z' h local
| o
sensitivity
database space
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Computing smooth sensitivity

Example functions with computable smooth sensitivity
o Median & minimum of numbers in a bounded interval
o MST cost when weights are bounded

o Number of triangles in a graph

Approximating smooth sensitivity
e only smooth upper bounds on LS are meaningful

e simple generic methods for smooth approximations

— work for median and 1-median in L

16



Road map

I. Function approximation
e Global sensitivity framework [DMNSO06]
e Smooth sensitivity framework [NRSO7]

e Sample-and-aggregate [NRS07]

1I. Learning
e Lixponential mechanism [MT07, KLNRSOS8]

17



New goal

e Smooth sensitivity framework requires

understanding combinatorial structure of f
— hard in general

e Goal: an automatable transformation from
an arbitrary f into an e-diff. private A

— A(z) = f(x) for "good” instances x

18



Example: cluster centers

Database entries: points in a metric space. ,
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e Comparing sets of centers: Earthmover-like metric

e Global sensitivity of cluster centers is roughly the
diameter of the space. But intuitively, if clustering is
"good”, cluster centers should be insensitive.

e No efficient approximation for smooth sensitivity
19
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Sample-and-aggregate framework

Intuition: Replace f with a less sensitive function f.

f(x) = g(f(sampley), f(sample,), ..., f(sample))

aggregation function @

20



Sample-and-aggregate framework

Intuition: Replace f with a less sensitive function f.

f(x) = g(f(sampley), f(sample,), ..., f(sample))

aggregation function

noise calibrated
> = output

to sensitivity of f

4

20



Good aggregation functions

® average

— works for L; and Lo

e center of attention

— the center of a smallest ball containing a strict

majority of input points

— works for arbitrary metrics

(in particular, for Earthmover)

— gives lower noise for Ly and Lo

21



Sample-and-aggregate method

Theorem

If f can be approximated on x
from small samples
then f can be released with little noise

22




Sample-and-aggregate method

Theorem

from small samples of size n

If f can be approximated on v within distance r

1—9¢

then f can be released with little noise ~ = + negl(n)
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Sample-and-aggregate method

Theorem

If f can be approximated on v within distance r

from small samples of size n'—°

then f can be released with little noise ~ = + negl(n)

e Works in all "interesting” metric spaces

e Example applications
— k-means cluster centers (if data is separated a.k.a.
[Ostrovsky Rabani Schulman Swamy 06])

— fitting mixtures of Gaussians (if data is i.i.d., using
[Achlioptas McSherry 05])

— PAC concepts (if uniquely learnable,
i.e., if learning algorithm always outputs
the same hypothesis or something close to it)
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Road map

I. Function approximation
e Global sensitivity framework [DMNSO06]
e Smooth sensitivity framework [NRSO7]

e Sample-and-aggregate [NRS07]

1I. Learning

e [xponential mechanism [McSherry Talwar 07,

Kasiviswanathan Lee Nissim Raskhodnikova Smith 08|
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Learning: the setting

Bank needs to decide which applicants are bad credit risks™
Goal: given sample of labeled data (past customers), produce good
prediction rule (hypothesis) for future loan applicants

*Example taken from Blum, FOCS03 tutorial
24
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Bank needs to decide which applicants are bad credit risks™

Goal: given sample of labeled data (past customers), produce good
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down | debt | Sees | M| 89
10 No Yes 0.32 Yes
10 No No 0.25 Yes
5} Yes No 0.30 No
20 No Yes 0.31 Yes
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Learning: the setting

Bank needs to decide which applicants are bad credit risks™

Goal: given sample of labeled data (past customers), produce good

prediction rule (hypothesis) for future loan applicants

down | debt | Sees | M| 89
10 No Yes 0.32 Yes
example y;| 10 | No | No | 0.25 | Yes
5} Yes No 0.30 No
20 No Yes 0.31 Yes
10 No No 0.25 Yes

Reasonable rules given this data:
e Predict YES iff 100 x == — (% down) < 25

e Predict YES iff (thigh debt) AND (% down > 5)
*Example taken from Blum, FOCS03 tutorial

label z;

24



Learning: the setting
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Learning: the setting

e Fixamples drawn according to distribution D
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Learning: the setting

e Fixamples drawn according to distribution D

e A point drawn according to D has to be classified
correctly w.h.p. (over learner randomness and D)

25



PAC learning ‘Valiant 84‘

Given distribution D over examples, labeled by function c,
hypothesis h is good if it mostly agrees with c:

P%[h(y) = ¢(y)] is close to 1.
Yo

26



PAC learning ‘Valiant 84‘

Given distribution D over examples, labeled by function c,
hypothesis h is good if it mostly agrees with c:

P%[h(y) = ¢(y)] is close to 1.
Yo

Definition of PAC learning
Algorithm A PAC learns a concept class C' if

e given polynomially many examples, drawn from D,
labeled by some c € C

o A outputs a good hypothesis
with high probability in polynomial time

26



PAC learning ‘Valiant 84‘

Given distribution D over examples, labeled by function c,
hypothesis h is good if it mostly agrees with c:

Pr [h(y) = c(y)] is close to 1.
y~D

Definition of PAC® learning

Algorithm A PAC* learns a concept class C' if

e given polynomially many examples, drawn from D,
labeled by some c € C

o A outputs a good hypothesis of polynomaial length
with high probability +n-polyromialtime

26



Private learning

Input: database x = (1, ..., x,)

x; = (yi, zi), where y; ~ D and z; = c¢(y;) is the label of example y;

% high | other | mmp/ || good
down | debt | accts inc risk?
10 No Yes 0.32 Yes
10 No No 0.25 Yes

5 Yes No 0.30 No
20 No Yes 0.31 Yes
10 No No 0.25 Yes
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Private learning

Input: database x = (1, ..., x,)

x; = (yi, zi), where y; ~ D and z; = c¢(y;) is the label of example y;

% high | other | mmp/ || good
down | debt | accts inc risk?
10 No Yes 0.32 Yes
10 No No 0.25 Yes

5 Yes No 0.30 No
20 No Yes 0.31 Yes
10 No No 0.25 Yes

Output: hypothesis

e.g.
“Predict Yes if
100 x Hilrrlrép —

(% down) < 257
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Private learning

Input: database x = (1, ..., x,)

x; = (yi, zi), where y; ~ D and z; = c¢(y;) is the label of example y;

% high | other | mmp/ || good .
down | debt | accts inc risk? Output: hypothesis
10 No Yes 0.32 Yes €.g.
10 No No 0.25 Yes “Predict Yes if
5 Yes No 0.30 No 100 x mp _
11ncC
20 No Yes 0.31 Yes (% dOWIl) < 95 7
10 No No 0.25 Yes
Definition

Algorithm A privately learns concept class C' if
o Utility: Algorithm A PAC learns class C

e Privacy: Algorithm A is differentially private
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Private learning

Input: database x = (1, ..., x,)

x; = (yi, zi), where y; ~ D and z; = c¢(y;) is the label of example y;

% high | other | mmp/ || good
down | debt accts inc risk?

10 No Yes 0.32 Yes
10 No No 0.25 Yes

5 Yes No 0.30 No
20 No Yes 0.31 Yes

Output: hypothesis

e.g.
“Predict Yes if
100 x Hilrrlrép —

(% down) < 257

10 No No 0.25 Yes

Definition

Algorithm A privately learns concept class C' if
o Utility: Algorithm A PAC learns class C

(average-case)

e Privacy: Algorithm A is differentially private  (worst-case)

27




Designing private learners: baby steps

View non-private learner as function to be approximated

e L[irst attempt: add noise

— Problem: Close hypothesis .
may mislabel many points °

28



Designing private learners: baby steps

View non-private learner as function to be approximated

e Hirst attempt: add noise

— Problem: Close hypothesis .
may mislabel many points °

e Second attempt:

apply sample-and-aggregate

to non-private learning algorithm b b |

— Works when good hypothesis saegaion e é

1s essentially unique

— Problem: there may be many good hypotheses —
different samples may produce different-looking
hypotheses

28



PAC* = Priwvate PAC

Theorem (Private analogue of “Occam’s razor”)

Fach PAC* learnable concept class can be learned privately,

ustng polynomially many samples.
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score(x, h) = # of examples in x correctly classified by h
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Theorem (Private analogue of “Occam’s razor”)

Fach PAC* learnable concept class can be learned privately,
ustng polynomially many samples.

Proof: Adapt the exponential mechanism of [MT07]:
score(x, h) = # of examples in x correctly classified by h

e Output h from C with probability ~ eseore(=:1)

— may take exponential time s.core =4
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PAC* = Priwvate PAC

Theorem (Private analogue of “Occam’s razor”)

Fach PAC* learnable concept class can be learned privately,
ustng polynomially many samples.

Proof: Adapt the exponential mechanism of [MT07]:
score(x, h) = # of examples in x correctly classified by h

e Output h from C with probability ~ eseore(=:1)

— may take exponential time score = 4
¢ o
Privacy: for any hypothesis /: ® o
Pr|h is output on input z] g-score(z;h) < o
— €
Pr[h is output on input 2]  esscore(@’h) —
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PAC* = Priwvate PAC

Theorem (Private analogue of “Occam’s razor”)

Fach PAC* learnable concept class can be learned privately, using

polynomially many samples.

Proof:  score(x,h) = # of examples in x correctly classified by h
g-score(x,h)

e Output A from C' with probability ~ e
Utility (learning):
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e Output A from C' with probability ~ e
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PAC* = Priwvate PAC

Theorem (Private analogue of “Occam’s razor”)

Fach PAC* learnable concept class can be learned privately, using

polynomially many samples.

Proof:  score(x,h) = # of examples in x correctly classified by h

g-score(x,h)

e Output A from C' with probability ~ e

Utility (learning):
Good h correctly label all examples: Pr[h] ~ ™"
Bad h mislabel > 10% of examples: Pr[h] ~ ="

Sufficient to ensure n > log(# bad hypotheses) = polynomial

_ output length of
= non-private learner

Then w.h.p. output h labels 90% of examples correctly.

By ”Occam’s razor”, if n > log(# hypotheses), then

h does well on examples = h does well on distrib. D
30



Road map

I. Function approximation
e Global sensitivity framework [DMNSO06]
e Smooth sensitivity framework [NRSO7]

e Sample-and-aggregate [NRS07]

1I. Learning
e Lixponential mechanism [MT07, KLNRSOS8]
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Conclustons

This talk: partial picture of techniques

e current techniques best for
— function approximation

— learning

e New ideas needed for
— combinatorial search problems
— text processing
— graph data (definitions?)

— high-dimensional outputs
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