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Private data analysis
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Users:

government,

researchers,

marketers,...

Collections of personal and sensitive data

• census

• medical and public health data

• social networks

• recommendation systems

• trace data: search records, click data

• intrusion-detection
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Meta Question

What information can be released?

• Two conflicting goals

– utility: users can extract ”global” statistics

– privacy: individual information stays hidden
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Related work

Other fields: huge amount of work

• in statistics (statistical disclosure limitation)

• in data mining (privacy-preserving data mining)

• largely: no precise privacy definition
(only security against specific attacks)

In cryptography (private data analysis)

• [Dinur Nissim 03, Dwork Nissim 04,

Chawla Dwork McSherry Smith Wee 05,

Blum Dwork McSherry Nissim 05,

Chawla Dwork McSherry Talwar 05,

Dwork McSherry Nissim Smith 06, ...]

• rigorous privacy guarantees
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Differential privacy [DMNS06]

Intuition: Users learn the same thing about me
whether or not I participate in the census

Two databases are neighbors if they differ in one row
(arbitrarily complex information supplied by one person).

x = ...

x1

x2

xn

x′ = ...

x1

x′
2

xn

Privacy definition

Algorithm A is ε-differentially private if

• for all neighbor databases x, x′

• for all sets of answers S

Pr[A(x) ∈ S] ≤ (1 + ε) · Pr[A(x′) ∈ S]
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Properties of differential privacy

...

x1

x2

xn

*
-
q
j ε-diff.

private

algorithm A

-A(x) Users

• ε is non-negligible (at least 1
n
).

• Composition: If A1 and A2 are ε-differentially private

then (A1, A2) is 2ε-differentially private

• robust in the presence of arbitrary side information
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What can we compute privately?

Research so far:
• Definitions [DiNi,DwNi,EGS,DMNS,DwNa,DKMMN,GKS]

• Function approximation

...

x1
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xn
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q
j

ε-diff.

private

A
-

�Compute f(x)

A(x) ≈ f(x)
Users

– Protocols [DiNi,DwNi,BDMN,DMNS,NRS,BCDKMT]

– Impossibility results [DiNi,DMNS,DwNa,DwMT,DwY]

– Distributed protocols [DKMMN,BNiO]

• Mechanism design [McSherry Talwar 07]

• Learning [Blum Dwork McSherry Nissim 05, KLNRS08]

• Releasing classes of functions [Blum Ligett Roth 08]

• Synthetic data [Machanavajjhala Kifer Abowd Gehrke Vilhuber 08]
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Road map

I. Function approximation

• Global sensitivity framework [DMNS06]

• Smooth sensitivity framework [NRS07]

• Sample-and-aggregate [NRS07]

II. Learning

• Exponential mechanism [MT07,KLNRS08]
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Function Approximation

...

x1

x2

xn

*
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q
j Trusted

agency

A
-

�Compute f(x)

A(x) =
f(x) + noise

Users

For which functions f can we have:

• privacy: differential privacy [DMNS06]

• utility: output A(x) is close to f(x)
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Global sensitivity framework [DMNS06]

Intuition: f can be released accurately when it is

insensitive to individual entries x1, . . . , xn.

Global sensitivity GSf = max
neighbors x,x′

‖f(x) − f(x′)‖1.

Example: GSaverage = 1
n

if x ∈ [0, 1]n.

Theorem

If A(x) = f(x) + Lap
(

GSf

ε

)

then A is ε-diff. private.
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Global sensitivity framework [DMNS06]

Intuition: f can be released accurately when it is

insensitive to individual entries x1, . . . , xn.

Global sensitivity GSf = max
neighbors x,x′

‖f(x) − f(x′)‖1.

Example: GSaverage = 1
n

if x ∈ [0, 1]n. Noise = Lap
(

1
εn

)
.

Compare to: Estimating frequencies (e.g., proportion of

people with blue eyes) from n samples: sampling error 1√
n
.

Theorem

If A(x) = f(x) + Lap
(

GSf

ε

)

then A is ε-diff. private.

Functions with low global sensitivity

• Means, variances for data in a bounded interval

• histograms, contingency tables

• singular value decomposition
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Instance-Based Noise

Big picture for global sensitivity framework:

• add enough noise to cover the worst case for f

• noise distribution depends only on f , not database x

Problem: for some functions that’s too much noise

Smooth sensitivity framework [Nissim Smith Raskhodnikova 07]:

noise tuned to database x
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Local sensitivity

Local sensitivity LSf (x) = max
x′: neighbor of x

‖f(x) − f(x′)‖

Reminder: GSf = max
x

LSf (x)

Example: median for 0 ≤ x1 ≤ · · · ≤ xn ≤ 1, odd n

-0 1r rr rrx1 xnxm−1 xm+1xm. . . . . .

6
median

LSmedian(x) = max(xm − xm−1, xm+1 − xm)

Goal: Release f(x) with less noise when LSf (x) is lower.
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Goal: Release f(x) with less noise when LSf (x) is lower.
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Instance-based noise: first attempt

Noise magnitude proportional to LSf (x) instead of GSf?

No! Noise magnitude reveals information.

Lesson: Noise magnitude must be an insensitive function.
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Smooth bounds on local sensitivity

Design sensitivity function S(x)

• S(x) is an ε-smooth upper bound on LSf (x) if:

– for all x: S(x) ≥ LSf (x)

– for all neighbors x, x′ : S(x) ≤ eεS(x′)

-

6

x

LSf (x)

Theorem

If A(x) = f(x) + noise

(
S(x)

ε

)

then A is ε′-differentially private.

Example: GSf is always a smooth bound on LSf (x)
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Smooth Sensitivity

Smooth sensitivity S∗
f (x)= max

y

(
LSf (y)e−ε·dist(x,y)

)

Lemma
For every ε-smooth bound S: S∗

f (x) ≤ S(x) for all x.

Intuition: little noise when far from sensitive instances

database space

high local

sensitivity

low local

sensitivity
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Smooth Sensitivity

Smooth sensitivity S∗
f (x)= max

y

(
LSf (y)e−ε·dist(x,y)

)

Lemma
For every ε-smooth bound S: S∗

f (x) ≤ S(x) for all x.

Intuition: little noise when far from sensitive instances

database space

high local

sensitivity

low local

sensitivity

low smooth sensitivity
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Computing smooth sensitivity

Example functions with computable smooth sensitivity

• Median & minimum of numbers in a bounded interval

• MST cost when weights are bounded

• Number of triangles in a graph

Approximating smooth sensitivity

• only smooth upper bounds on LS are meaningful

• simple generic methods for smooth approximations

– work for median and 1-median in Ld
1
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Road map

I. Function approximation

• Global sensitivity framework [DMNS06]

• Smooth sensitivity framework [NRS07]

• Sample-and-aggregate [NRS07]

II. Learning

• Exponential mechanism [MT07,KLNRS08]
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New goal

• Smooth sensitivity framework requires

understanding combinatorial structure of f

– hard in general

• Goal: an automatable transformation from

an arbitrary f into an ε-diff. private A

– A(x) ≈ f(x) for ”good” instances x
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Example: cluster centers

Database entries: points in a metric space.
x

rb rb
rb

rbrb
rb
rb

rbrb
rbrb rb

rb

rb rb
rb

rbrb
rb
rb

rbrb
rbrb rb

rb

rb rb
rb

rbrb
rb
rb

rbrb
rbrb rb

rb

rb

x′

rb rb
rb

rbrb
rb
rb

rbrb
rbrb rb

rb

rb rb
rb

rbrb
rb
rb

rbrb
rbrb rb

rb

rb rb
rb

rbrb
rb
rb

rbrb
rbrb rb

rb

rb

• Comparing sets of centers: Earthmover-like metric

• Global sensitivity of cluster centers is roughly the

diameter of the space. But intuitively, if clustering is

”good”, cluster centers should be insensitive.

• No efficient approximation for smooth sensitivity
19
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Sample-and-aggregate framework

Intuition: Replace f with a less sensitive function f̃ .

f̃(x) = g(f(sample1), f(sample2), . . . , f(samples))

) � q

? ? ?

jN �

x

xi1 , . . . , xit
xj1 , . . . , xjt

. . . xk1
, . . . , xkt

} } }

}

m m m

m

f f f

gaggregation function
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Sample-and-aggregate framework

Intuition: Replace f with a less sensitive function f̃ .

f̃(x) = g(f(sample1), f(sample2), . . . , f(samples))

) � q
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xi1 , . . . , xit
xj1 , . . . , xjt

. . . xk1
, . . . , xkt

} } }

}

m m m
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f f f

gaggregation function

?
- -m+

noise calibrated

to sensitivity of f̃
output
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Good aggregation functions

• average

– works for L1 and L2

• center of attention

– the center of a smallest ball containing a strict

majority of input points

– works for arbitrary metrics

(in particular, for Earthmover)

– gives lower noise for L1 and L2
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Sample-and-aggregate method

Theorem
If f can be approximated on x

from small samples

then f can be released with little noise
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Sample-and-aggregate method

Theorem
If f can be approximated on x within distance r

from small samples of size n1−δ

then f can be released with little noise ≈ r
ε

+ negl(n)
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Sample-and-aggregate method

Theorem
If f can be approximated on x within distance r

from small samples of size n1−δ

then f can be released with little noise ≈ r
ε

+ negl(n)

• Works in all ”interesting” metric spaces

• Example applications

– k-means cluster centers (if data is separated a.k.a.
[Ostrovsky Rabani Schulman Swamy 06])

– fitting mixtures of Gaussians (if data is i.i.d., using
[Achlioptas McSherry 05])

– PAC concepts (if uniquely learnable,
i.e., if learning algorithm always outputs

the same hypothesis or something close to it)
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Road map

I. Function approximation

• Global sensitivity framework [DMNS06]

• Smooth sensitivity framework [NRS07]

• Sample-and-aggregate [NRS07]

II. Learning

• Exponential mechanism [McSherry Talwar 07,

Kasiviswanathan Lee Nissim Raskhodnikova Smith 08]
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Learning: the setting

Bank needs to decide which applicants are bad credit risks∗

Goal: given sample of labeled data (past customers), produce good

prediction rule (hypothesis) for future loan applicants

∗Example taken from Blum, FOCS03 tutorial

24
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Learning: the setting

Bank needs to decide which applicants are bad credit risks∗

Goal: given sample of labeled data (past customers), produce good

prediction rule (hypothesis) for future loan applicants

% high other mmp/ good
down debt accts inc risk?

10 No Yes 0.32 Yes

10 No No 0.25 Yes

5 Yes No 0.30 No

20 No Yes 0.31 Yes

10 No No 0.25 Yes

example yi label zi

Reasonable rules given this data:

• Predict YES iff 100 × mmp
inc − (% down) < 25

• Predict YES iff (!high debt) AND (% down > 5)
∗Example taken from Blum, FOCS03 tutorial
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Learning: the setting
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• Examples drawn according to distribution D
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• Examples drawn according to distribution D

• A point drawn according to D has to be classified

correctly w.h.p. (over learner randomness and D)
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PAC learning [Valiant 84]

Given distribution D over examples, labeled by function c,

hypothesis h is good if it mostly agrees with c:

Pr
y∼D

[h(y) = c(y)] is close to 1.

26



PAC learning [Valiant 84]

Given distribution D over examples, labeled by function c,

hypothesis h is good if it mostly agrees with c:

Pr
y∼D

[h(y) = c(y)] is close to 1.

Definition of PAC learning

Algorithm A PAC learns a concept class C if

• given polynomially many examples, drawn from D,

labeled by some c ∈ C

• A outputs a good hypothesis

with high probability in polynomial time

26



PAC learning [Valiant 84]

Given distribution D over examples, labeled by function c,

hypothesis h is good if it mostly agrees with c:

Pr
y∼D

[h(y) = c(y)] is close to 1.

Definition of PAC∗ learning

Algorithm A PAC∗ learns a concept class C if

• given polynomially many examples, drawn from D,

labeled by some c ∈ C

• A outputs a good hypothesis of polynomial length

with high probability in polynomial timein polynomial time
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Private learning

Input: database x = (x1, ..., xn)

xi = (yi, zi), where yi ∼ D and zi = c(yi) is the label of example yi

% high other mmp/ good

down debt accts inc risk?

10 No Yes 0.32 Yes

10 No No 0.25 Yes

5 Yes No 0.30 No

20 No Yes 0.31 Yes

10 No No 0.25 Yes
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100 × mmp
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(% down) < 25 ”
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• Privacy: Algorithm A is differentially private
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Private learning

Input: database x = (x1, ..., xn)

xi = (yi, zi), where yi ∼ D and zi = c(yi) is the label of example yi

% high other mmp/ good

down debt accts inc risk?

10 No Yes 0.32 Yes

10 No No 0.25 Yes

5 Yes No 0.30 No

20 No Yes 0.31 Yes

10 No No 0.25 Yes

Output: hypothesis

e.g.

“Predict Yes if

100 × mmp
inc −

(% down) < 25 ”

Definition
Algorithm A privately learns concept class C if

• Utility: Algorithm A PAC learns class C (average-case)

• Privacy: Algorithm A is differentially private (worst-case)

27



Designing private learners: baby steps

View non-private learner as function to be approximated

• First attempt: add noise

– Problem: Close hypothesis

may mislabel many points
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Designing private learners: baby steps

View non-private learner as function to be approximated
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�� �
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xi1 , . . . , xit
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. . . xk1
, . . . , xkt
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�

� � �

�

f f f

gaggregation function

�
� ��+

noise calibrated

to sensitivity of f̃
output

• First attempt: add noise

– Problem: Close hypothesis

may mislabel many points

• Second attempt:

apply sample-and-aggregate

to non-private learning algorithm

– Works when good hypothesis

is essentially unique

– Problem: there may be many good hypotheses –

different samples may produce different-looking

hypotheses

28



PAC∗ = Private PAC∗

Theorem (Private analogue of “Occam’s razor”)

Each PAC∗ learnable concept class can be learned privately,

using polynomially many samples.
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Proof: Adapt the exponential mechanism of [MT07]:
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PAC∗ = Private PAC∗

Theorem (Private analogue of “Occam’s razor”)

Each PAC∗ learnable concept class can be learned privately,

using polynomially many samples.

Proof: Adapt the exponential mechanism of [MT07]:

score(x, h) = # of examples in x correctly classified by h

• Output h from C with probability ∼ eε·score(x,h)

– may take exponential time score = 3score = 4

ue
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ue

ue

Privacy: for any hypothesis h:

Pr[h is output on input x]

Pr[h is output on input x′]
=

eε·score(x,h)

eε·score(x′,h)
≤ eε
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PAC∗ = Private PAC∗

Theorem (Private analogue of “Occam’s razor”)

Each PAC∗ learnable concept class can be learned privately, using

polynomially many samples.

Proof: score(x, h) = # of examples in x correctly classified by h

• Output h from C with probability ∼ eε·score(x,h)

Utility (learning):
Good h correctly label all examples: Pr[h] ∼ eε·n

Bad h mislabel ≥ 10% of examples: Pr[h] ∼ eε·0.9n

Sufficient to ensure n ≫ log(# bad hypotheses)
︸ ︷︷ ︸

≤
output length of

non-private learner

= polynomial

Then w.h.p. output h labels 90% of examples correctly.
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PAC∗ = Private PAC∗

Theorem (Private analogue of “Occam’s razor”)

Each PAC∗ learnable concept class can be learned privately, using

polynomially many samples.

Proof: score(x, h) = # of examples in x correctly classified by h

• Output h from C with probability ∼ eε·score(x,h)

Utility (learning):
Good h correctly label all examples: Pr[h] ∼ eε·n

Bad h mislabel ≥ 10% of examples: Pr[h] ∼ eε·0.9n

Sufficient to ensure n ≫ log(# bad hypotheses)
︸ ︷︷ ︸

≤
output length of

non-private learner

= polynomial

Then w.h.p. output h labels 90% of examples correctly.

By ”Occam’s razor”, if n ≫ log(# hypotheses), then

h does well on examples =⇒ h does well on distrib. D
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Road map

I. Function approximation

• Global sensitivity framework [DMNS06]

• Smooth sensitivity framework [NRS07]

• Sample-and-aggregate [NRS07]

II. Learning

• Exponential mechanism [MT07,KLNRS08]
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Conclusions

This talk: partial picture of techniques

• current techniques best for

– function approximation

– learning

• New ideas needed for

– combinatorial search problems

– text processing

– graph data (definitions?)

– high-dimensional outputs
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