

University at Buffalo

State University of New York

How Students Measure Up: An Assessment Instrument for Introductory Computer Science

Adrienne Decker

Dissertation Defense for the Degree of Doctor of Philosophy

May 1, 2007

How should we teach Introductory CS?

- Programming or no programming
- Graphical or text-based programs
- Individual or collaborative learning techniques
- Which paradigm
- Which language

Predictors Research

- We can find predictors, but what are we using as a measure of success? (Ventura, 2003)
- No good assessments available for task
 - GRE Subject-Test in Computer Science
 - ETS Major Field Test in Computer Science
 - AP Computer Science Exams (A & AB)

How can we measure success?

- Exam Grades
- Assignment Grades
- Overall Course Grades
- Lack reliability and validity
 - Reliability
 - "degree of consistency among test scores"
 - Validity
 - the ability of a test to "reliably measure what is relevant"¹

1 – Marshall and Hales (1972)

PhD Dissertation Defense

Proposed Solution

- Create an assessment for the introductory computer science courses.
 - Language-independent
 - Paradigm-independent
 - Programming-first approach (CC 2001)
 - Timed paper-and-pencil exam
 - Reliable
 - Valid

First Year Recommendations

CC2001 gives six approaches to the introductory curriculum

- Programming-first
 - Functional-first
 - Imperative-first
 - Objects-first
- Non-programming-first
 - Algorithms-first
 - Breadth-first
 - Hardware-first

Introductory Approaches

- Goals for the first year across all six approaches including discrete math coverage
- Two-semester introductory sequence

Intersection of the Programming-first Approaches

CS1 only: 60% of topics
CS1+CS2: >80% of topics

Creation of Intersection

- Several inconsistencies uncovered
 - Indication by CC2001 that all topics from a knowledge unit are covered. The reading of the sample syllabi makes no mention of the topics from that knowledge unit.

Refining the Topic List

- 75 topics total
- Topics omitted from assessment due to:
 - Time constraints
 - Programming Process (design, debugging, testing)
 - Concepts Underlying Process (abstraction)
 - Exploration of Programming (tools, environments)
 - Coverage in other courses
 - Difficulty in determining coverage

Omitted Topics

- Belong in CS1-CS2 sequence
- Taught in classroom
- Must be assessed in other ways
 - Laboratory exercises
 - In-class assignments
 - Quizzes

Learning Objectives

- CC2001 gives learning objectives for knowledge units
- Matched topics to learning objectives
- Found that definitions of some terms were needed
 - Within learning objectives
 - Within topics themselves
- Some topics did not have corresponding learning objectives

Exam Creation & Critique

- Questions were based on topics not omitted and learning objectives
- Language was necessary: Java used
- Critique by course instructors who would give exam as well as independent reviewers
 - Two schools
 - Five total reviewers

Grading Rubric

- Multiple Choice
- Free Response
- Subjective Questions
 - Partial Credit

Exam Administration

- Closed book
- Closed notes
- Closed neighbor exam
- 3-hour time limit
- Exam answer booklets only identified by number, not name

Grading Exam – the Raters

Subjective questions:

- Scored by two raters
- Rater scoring disagreements range:
 - 12-29% of exams
- Raters met to resolve discrepancies

Grading Exam – the Raters

- Rater 1 correct 44.5% of the time
- Rater 2 correct 47% of the time
- For all subjective questions, there was at least one exam where both raters had given the incorrect grade the first time.

Grading Recommendations

- Multiple raters and ratings for all subjective questions
 - Resolution of discrepancies
- Grade simultaneously
- Grade anonymously

University at Buffalo

State University of New York

- Students enrolled in CS2 (CSE 116) at UB
 - Fall 2005
 - Spring 2006
- IRB approval obtained
- Participants completed exam and filled out demographic questionnaire
- Data collected about participants' grades in CS1 & CS2

CS2 Population Information

- 135 students enrolled
- 14 students resigned
- 121 students eligible for participation in study
 - 110 men, 11 women
 - 45 freshmen, 76 non-freshmen
 - Major:
 - 37 computer engineering (CEN)
 - 46 computer science (CS)
 - 38 other majors

Study Participants

- 100 students chose to participate (83%)
 - 90 men, 10 women
 - 52 freshmen, 47 non-freshmen
 - Majors:
 - 26 CEN
 - **50 CS**
 - 23 other majors
- Year in school and major suffer from self-report vs. university records mismatch

Non-participants

Exam Statistics

- Minimum score: 138 (38.9%)
- Median score: 254 (71.7%)
- Maximum score: 334 (94.3%)
- Mean score: 243.13 (68.6%)

Time to Complete Exam

- Average time to complete: 2:31
- Time to complete vs. Exam Performance
 - No correlation

Time to Complete Exam

- Students who took full 3 hours vs. students who left early
 - Did worse on exam
 - Did equally well in CS1 & CS2

Cronbach's Alpha for internal consistency reliability 0.94.

Demographics

No difference in performance between:

- Men and women
- Typically aged CS1-CS2 students and older students
- Freshmen and non-freshmen
- CEN or CS majors and non-majors
- CEN and CS majors

University at Buffalo

State University of New York

- No difference in exam performance:
 - How students took course
 - Consecutive vs. non-consecutive semesters
 - CS1 in Fall and CS2 in Spring vs. others
 - CS1 in Spring and CS2 in Fall vs. others
 - Students who repeated CS1 or CS2 vs. those who did not

University at Buffalo

State University of New York

No difference in exam performance:

Previous Programming Experience

- Programmed prior to CS1 vs. no programming
- Programmed in Java prior to CS1 vs. not
- First Language Learning

Java first vs. some other language first

Demographics

- Possible difference (borderline *p*-value)
 - Programmed in C-derived language (Java, C, C++, C#) before taking CS1 vs. not

Positive Correlations

- Exam score correlated positively with:
 - CS1 grade
 - CS2 grade (with final exam)
 - CS2 grade (without final exam)
 - CS1-CS2 average grade

Contributions

- Process for analyzing and using curriculum document for creation of exam.
- Uncovered inconsistencies with CC2001 within sample syllabi and learning objectives.
- Intersection of programming-first approaches identified.

Conclusions

- Reliability Acceptable
- Face Validity
- Content Validity
 - Outside critique and review by experts
- Criterion Validity
 - Positive correlation between exam score and CS1 and CS2 grades

Conclusions – Potential Bias

- No difference in performance based on:
 - Gender
 - Year in school
 - Age
 - Major
 - Prior programming experience
- Possible difference in performance if previously used C-derived languages.

University at Buffalo

State University of New York

- More student data
- Continuation of predictors research
- Additional versions (languages)
- Multiple institutions
- Updates for future curricula