
Results from the 5th "Killer Examples" for Design Patterns Workshops
www.cse.buffalo.edu/faculty/alphonce/KillerExamples

OOPSLA 2002, Seattle • OOPSLA 2003, Anaheim • PREVIOUS WORKSHOPS • OOPSLA 2004, Vancouver • OOPSLA 2005, San Diego

Caspersen’s Curve
Understanding

Can
 id

en
tify

 co
nt

ex
t

Time
Motivation

Killer ex
shown

Back in dorm...

Time for another
killer example

Reinforcement

Smaller programs
to strengthen
understanding

Wong’s Mapping

Fu
nd

am
en

ta
l p

rin
ci

pl
e O

O
 D

esign Pattern
O

O
 D

esign Pattern

Underlying Principles

Abstract Behavior

Encapsulation

Delegation

Varirant vs. Invariant

Abstract Construction

Decoupled Behavior

Recursion

Strategy

Adapter

Decorator

State

Visitor

Factory

Composite

MVCIn
cr

ea
si

ng
 Q

ua
lit

y
of

 S
ol

ut
io

n

Goal of a "Killer Example": show benefits
of patterns and how student "shortcuts"

to solutions eventually break down.

Pedagogical Process

In
tr

a
-P

at
te

rn
In

te
r -

Pa
tte

rn

1. Use it

2. Conceptualize it

3. Build it

4. Analyze/study high
quality code

5. Design and construct
Software using DPs

6. Evaluate software

1.1 Use an instance of Iterator

1.2 General concept of an Iterator.

1.3 Define own Iterator

1.4 Separate Iterator to access
private parts of a collection

Iterative Design Process

e.g.

Testing Mock-ups (Stubs)

Iterator

A workshop to share ideas,
specifically “killer examples”, for

Fundamental Object-Oriented (OO) principles
and

Design Patterns

primarily in an objects-first CS1-CS2 sequence.

Killer Example

The Jargon File defines a “killer app” as an
“application that actually makes a sustaining

market for a promising but under-utilized
technology.”

In the same vein, we take a “killer example” to be
one which provides clear and compelling

motivation for some concept.

Killer Examples must be an integral component of
a larger, cohesive OO curriculum.

They do not exist in a vacuum, but rather as part
of a deliberate pedagogical progression

that drives from motivation to comprehension.

Motivation for Teaching Design Patterns

Systematic way to solve complex problems
Solutions that scale up

Design patterns support building of:
correct, robust, flexible & extensible software

in an efficient manner (time & $).

Underlying principles supporting our goals:

Abstraction

Invariant/variant decoupling
(commonality/variability analysis)

Parameterization

Extreme encapsulation

"Killer" idea: Change the
requirements to drive students
towards higher quality solutions.

Student perceptions of
design process

Reaslistic path to
desired design

Student shortcuts

Designs with problems
(smell or errors)

Desirable solutions

Carl Alphonce
University at Buffalo

alphonce@cse.buffalo.edu

Michael E. Caspersen
University of Aarhus
mec@daimi.au.dk

Adrienne Decker
University at Buffalo

adrienne@cse.buffalo.edu

Bruce Trask
PrismTech

Bruce.Trask@prismtech.edu

Design Patterns can be used to illustrate
fundamental Computer Science principles.

Design Patterns change and shape the way we
look at problems.

Can
 ap

ply
 D

P

Be
lie

ve
 D

Ps
 go

od

La
ck

 un
de

rst
an

din
g

LEGEND

Problem Solving Process

