
We Claim this Class for Computer 
Science: A Non-Mathematician’s 
Discrete Structures Course

Adrienne Decker
Department of Computer 
Science & Engineering

University at Buffalo, SUNY
adrienne@cse.buffalo.edu

Phil Ventura
Department of Computer 

Science
State University of West 

Georgia
pventura@westga.edu



Institution Background

One-semester Discrete Mathematics 
course required by all majors
Course has 4 hours of contact time per 
week: 3 hours lecture, 1 hour recitation
Departmental requirement of a one-
semester probability/statistics course



Conflict Arises

Current version of Discrete Math not 
working
Unhappy students
Unhappy faculty in upper-level courses



Proposed Solution

CC2001 Guidelines
Make the course speak to the students



Reorganization

Topics covered in Discrete Structures
Logic, including formal logic proofs
Functions, Relations, Sets
Proof Techniques
Counting (Recurrence Relations Only)
Graphs and Trees



Topic Presentation

General introduction to topic
Terms
Definitions

Mathematical Formalism Developed
Theorems/Axioms
Proofs where appropriate
Homework Problems Assigned

Applications



Logic

Basic Inference and Equivalence Rules
Propositional Logic Proofs
Predicate Logic
Translations
Predicate Logic Proofs

Application
Prolog



Sets, Relations, Functions

ADTs
Created Set.java



Set
java.util.HashSet _set
Set()
void insert(Object obj)
boolean member(Object obj)
boolean equals(Set s)
boolean isEmptySet()
boolean isSubset(Set sub)
Set union(Set other)
Set intersection(Set other)
Set difference(Set other)
Set cartesianProduct(Set other)
Set powerSet()
int cardinality()
String toString()



Sets, Relations, Functions

Created Relation.java



Relation
Relation()
boolean isOneToOne()
boolean isOneToMany() 
boolean isManyToOne() 
boolean isManyToMany() 
boolean isReflexive() 
boolean isSymmetric() 
boolean isAntiSymmetric() 
boolean isTransitive() 
boolean isPartialOrdering() 
boolean isEquivalenceRelation() 
void reflexiveClosure()



Sets, Relations, Functions

Functions Introduced
Future (this semester?): Introduce 
Functional Programming Language



Recurrence Relations, Induction, 
and Recursion – oh my!

Topics are related
Many students familiar with recursion
Induction Proofs

Not just natural numbers!
Structural induction over Strings, Trees, 
and Graphs



Graphs and Trees

Trees discussed extensively in CS2
Decision Trees
Huffman Codes

Graphs focused on more heavily
Warshall’s Algorithm
Euler Path, Hamiltonian Circuit
Shortest Path
Minimum Spanning Tree
Depth-First Search, Breadth-First Search



Observations

Students responded to applications
Students commented that material 
overlapped
Wanted theorectical treatment of 
concepts covered in other courses



Experiments

Hypothesis: Students taking both 
Discrete Structures and CS2 would 
perform better in CS2 than those who 
do not.
Hypothesis: Students taking both 
Discrete Structures and CS2 would 
perform better in Discrete Structures 
than those who do not.



Results

No benefit to student grades in CS2
Benefits for student grades in Discrete 
Structures



Open Issues

Introduction of a functional 
programming language
Graph Visualization
Re-ordering of topics of course
CS1 prerequisite


	We Claim this Class for Computer Science: A Non-Mathematician’s Discrete Structures Course
	Institution Background
	Conflict Arises
	Proposed Solution
	Reorganization
	Topic Presentation
	Logic
	Sets, Relations, Functions
	Sets, Relations, Functions
	Sets, Relations, Functions
	Recurrence Relations, Induction, and Recursion – oh my!
	Graphs and Trees
	Observations
	Experiments
	Results
	Open Issues

