
"Killer Examples” for Design Patterns and Objects First Workshops
http://www.cse.buffalo.edu/faculty/alphonce/KillerExamples

OOPSLA 2005, San Diego • OOPSLA 2004, Vancouver • OOPSLA 2003, Anaheim • OOPSLA 2002, Seattle

C a s p e r s e n ’ s C u r v e K i l l e r E x a m p l e s

2005 WORKSHOP
Design Patterns in JDK Collections

C. Bouamalay (SBC Services)

Killer Lab: Flow Simulation and Lead Poisoning Study
J. Heliotis and C. Lutzer (RIT)

Message-Oriented Middleware Cache Pattern – A Pattern in a
SOA Environment

F. Yan, R. Fang and Z. Tran (IBM China Research Lab)

Using Design Patterns to Help Test Your Classes & Functions
B. Trask, A. Roman and V. Bhanot (PRISMTECH)

2004 Workshop

Generic Data Access in Microsoft .NET
Joe Hummel (Lake Forest College)

A simple calculator for novice learning
J. Bergin (Pace University)

Interactive Program Guide
A. Sterkin (NDS Technologies)

The Need for Killer Example for Object-
Oriented Framworks

M. Caspersen & H. Christensen
(University of Aarhus)

Composition Framework
D. Skrien (Colby College)

Configuration Puzzles
J. Heliotis and S. Marshall (RIT)

Developing an Elevator Control System
C. Nevison (Colgate) and B. Wells (South Fork High

School)

Understanding

Believe DP is good

Can apply DP, given
proper context

Can identify
proper context

Lack of
understanding

Time

Motivation

Killer Example Shown

Back in dorm...

Time for another
killer example

Reinforcement

Use smaller drill/skill program(s)
to strengthen understanding

W o n g ’ s M a p p i n g

Abstract Behavior

Encapsulation

Delegation

Varirant vs. Invariant

Abstract Construction

Decoupled Behavior

Recursion

Strategy

Adapter

Decorator

State

Visitor

Factory

Composite

MVC

Fundamental
principle

OO Design Pattern
Underlying Principles

Java Power Tools
R. Rasala, V. K. Proulx & J. Raab

(Northeastern)

Kaleidoscope
M. R. Wick (University of Wisconsin—Eau

Claire)
Properties of a “Killer Example”

S. Sendall (Swiss Federal Institute of
Technology)

2002 Workshop

Applying the Extension Object
Pattern to the Software

Communication Architecture
D. Paniscotti and B. Trask (SDR

Products)

Presentation Application
(“PowerPoint”)

S. Stuurman (Open University, The
Netherlands) and G. Florijn (SERC)

2003 Workshop

Foundation for Object-Oriented
Graphics

R. Rasala (Northeastern University)

In
cr

ea
si

ng
 Q

ua
lit

y
of

 S
ol

ut
io

n

Goal of a Killer Example is to show
the benefits of using patterns and
how these ”shortcuts” to solutions

eventually break down.

Pedagogical Process for Teaching DPs

I n
 t

r a

P
a

t t
 e

 r
n

I n
 t

e
r

P

a
t t

 e
 r

n
s

1. Use it

2. Conceptualize it

3. Build it

4. Analyze/study high
quality code

5. Design and construct
Software using DPs

6. Evaluate software

1.1 Use an instance of Iterator to
go through a collection.

2.1 Use an instance of Iterator to
go through a collection.

1.2 General concept of an Iterator. 2.2 General concept of Strategy.

1.3 Create a class that implements
the Iterator interface

2.3.a Create a class that
implements Comparator.

2.3.b Create a class hierarchy that
implements Strategy.1.4 Separate Iterator to access

private parts of a collection

2.4 GoF presentation of Strategy

Iterative Design Process

e.g.

Testing Mock-ups (Stubs)

Iterator Strategy

A workshop to share ideas, specifically “killer examples”, for

Fundamental Object-Oriented (OO) principles
and

Design Patterns

primarily in an objects-first CS1-CS2 sequence.

Killer Example

The Jargon File defines a “killer app” as an
“application that actually makes a sustaining

market for a promising but under-utilized
technology.”

In the same vein, we take a “killer example”
to be one which provides clear and

compelling motivation for some concept.

Killer Examples must be an integral
component of a larger, cohesive OO

curriculum.

They do not exist in a vacuum, but rather as
part of a deliberate pedagogical progression

that drives from motivation to comprehension.

Motivation for Teaching Design Patterns

We want a systematic way to solve complex
problems (need solutions that scale up).
Design patterns support the building of

correct, robust, flexible & extensible software
in an efficient manner (time & $).

Important underlying principles which allow
us to reach our goals:

Abstraction

Invariant/variant decoupling
(commonality/variability analysis)

Parameterization

Extreme encapsulation
(high abstraction; program to invariant

behavior; decoupling to manage complexity)

”Killer” idea: Change the
requirements to drive students
towards higher quality
solutions.

Legend

Student perceptions of the design
process

True path to desired design

Problems with design (e.g. smell or
errors)

Student shortcuts to a solution

Desirable solutions

Carl Alphonce
University at Buffalo

alphonce@cse.buffalo.edu

Michael E. Caspersen
University of Aarhus
mec@daimi.au.dk

Adrienne Decker
University at Buffalo

adrienne@cse.buffalo.edu

Martha Kosa
Tennessee Technological University

MJKosa@tntech.edu

Stephen Wong
Rice University

swong@cs.rice.edu

Design Patterns can be used to illustrate fundamental
Computer Science principles.

Design Patterns change and shape the way we look at
problems.

