
Killer “Killer Examples” for
Design Patterns

Carl Alphonce Adrienne Decker
alphonce@cse.buffalo.edu adrienne@cse.buffalo.edu

Department of Computer Science & Engineering
University at Buffalo, SUNY

Michael Caspersen
mec@daimi.au.dk

Department of Computer Science
University of Aarhus

mailto:alphonce@cse.buffalo.edu
mailto:adrienne@cse.buffalo.edu
mailto:mec@daimi.au.dk

Common themes of this session

• Patterns, patterns everywhere
– in what we teach (first two papers of session deal

with design patterns)
– in how we teach (last paper of session deals with

pedagogical patterns)
• Patterns work best when they support each other

What is a Design Pattern?

• Who does not want me to explain what a design
pattern is?

• According to GoF:
Design Patterns describe simple and elegant solutions to
specific problems in object-oriented software design.
[Preface]

• Another description
Design Patterns are “best-practices” solutions to
common software design problems.

“Killer Examples” for Design Patterns
workshops

• Gathers “Killer Examples” from industry and academia
• Held at OOPSLA:

– 2006 in Portland
– 2005 in San Diego
– 2004 in Vancouver
– 2003 in Anaheim
– 2002 in Seattle

• In this presentation we share some lessons that have
come out of the workshop series

Why teach design patterns?

• Students need to learn concepts/skills with
staying power.

• In other words, don’t focus on tools (i.e.
languages, technologies), but what we can
do with the tools.

• Software correctness is important, but so are
other qualities, such as scalability,
extensibility, flexibility, and robustness.

Challenges: student preconceptions

• Students tend to focus only on input-output
behavior of their programs.

• Students tend not to focus on the quality of the
solutions they come up with.
– grading can reinforce this idea
– nature of assignments can also reinforce this

• Students tend to have a very skewed view of the
software development process (e.g. linear “poof”
process).

Challenges: student preconceptions

• Beginning students often do not believe design
patterns are used in “real world” software
design.
– they are surprised to learn object-orientation and

design patterns can actually be (and are) used in
safety-critical embedded military applications, for
example

Challenges:
dispelling the misconceptions

• Examples which benefit from application of
design patterns tend to be rich in structure
and complexity.

• These examples therefore naturally tend to
be less accessible to students than simpler
and smaller “textbook” examples.

Challenges:
Where do good examples come from?
• Examples which faculty construct lack

“street-cred”

• Students want to see “real-world”
application of the ideas they are learning.
Otherwise they are too easily dismissed as
“ivory tower” examples.

Lessons learned: Context

• Patterns cannot effectively be taught in
isolation: context of problem gives
motivation.

• Patterns must be presented in a context
which clearly demonstrates the usefulness
of the pattern in comparison to the same
software built without them.

Lessons learned: Accessibility

• Students must readily grasp the context of
the problem (e.g. an interactive program
guide for cable or satellite TV).

• Spending too much time understanding the
domain of a problem distracts from course
goals.

Lessons learned: Real-world

• Patterns are mined from real-world code.
• Examples must reflect this fact.
• This is an important connection and

motivation for studying design patterns for
many students.

Lessons learned: Clear benefits

• Benefits which accrue due to use of patterns
must be clearly spelled out to students.

• They must see how design pattern use
improves the readability, scalability,
flexibility, etc.

Pedagogy

• Intra-pattern considerations

• Inter-pattern considerations

Pedagogy

• Intra-pattern considerations
– use it
– conceptualize it
– build it
– analyze/study high quality code

• Inter-pattern considerations

Pedagogy

• Intra-pattern considerations
– use it
– conceptualize it
– build it
– analyze/study high quality code

• Inter-pattern considerations
– design and construct software solutions
– evaluate

Killer “Killer Examples”
Three representatives from the workshops

• Frameworks
– by Caspersen and Christensen (2003)

• Interactive program guide
– Sterkin (2003)

• Hardware/software testing
– by Trask, Roman and Bhanot (2005)

Killer “Killer Example”
Frameworks

• Frameworks are pervasive (e.g. J2EE, Swing, RMI)
• Demonstrate good OO design:

– inversion of control (user of framework builds components
for framework, does not control flow)

– hotspots (hooks or variability points: variability-
commonality analysis or variant-invariant decomposition)

• Presenter Framework: MVC in action
– provides navigation framework for simple multi-media

presentations
– student can provide content and navigation links using the

framework

Killer “Killer Example”
Interactive Program Guide

• Example is readily accessible to beginning
students

• Rich environment for patterns
– iterator (channels, programs, themes, etc)
– state (browse channels, browse themes, set-up, etc)
– command (behaviors of buttons)
– mediator (different parts of display must be kept in

synch)

Killer “Killer Example”
Hardware / Software Testing

• Addresses the problem of how to build tests for
components which don’t yet exist
– control software for hardware which is being

developed in parallel
• Shows progression that developers went

through in finding good solution
– strategy pattern
– abstract factory pattern

Visit the workshop series website
www.cse.buffalo.edu/~alphonce/KillerExamples

E-mail us:
adrienne@cse.buffalo.edu

mec@daimi.au.dk
alphonce@cse.buffalo.edu

http://www.cse.buffalo.edu/~alphonce/KillerExamples
mailto:adrienne@cse.buffalo.edu
mailto:mec@daimi.au.dk
mailto:alphonce@cse.buffalo.edu

	Killer “Killer Examples” for Design Patterns
	Common themes of this session
	What is a Design Pattern?
	“Killer Examples” for Design Patterns workshops
	Why teach design patterns?
	Challenges: student preconceptions
	Challenges: student preconceptions
	Challenges:dispelling the misconceptions
	Challenges:Where do good examples come from?
	Lessons learned: Context
	Lessons learned: Accessibility
	Lessons learned: Real-world
	Lessons learned: Clear benefits
	Pedagogy
	Pedagogy
	Pedagogy
	Killer “Killer Examples”Three representatives from the workshops
	Killer “Killer Example”Frameworks
	Killer “Killer Example”Interactive Program Guide
	Killer “Killer Example”Hardware / Software Testing
	Visit the workshop series website

