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CSE 113 A

April 19 - 23, 2010

Announcements

Exam 4 Review – Wednesday, April 21st

Exam 4 – Friday, April 23rd

Lab 4 due - Sunday, April 25th

Exam return – Monday, April 26th
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Today’s Lecture

 There are problems we can solve

 There are problems we know we can solve, but they 

are expensive to solve

 There are problems we know we can not solve
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Problems we can solve

 You’ve solved a few yourself.

 There are obviously many more.

 What kinds of problems have computers solved?
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Problems we know we can 
solve

 These problems have solutions that run in reasonable 

time

 When we discuss this formally, we express the time it 

takes to find a solution to be a function where the 

variable is the size of the inputs.  The function is 

expressed in terms of the size of the inputs.

 For example, a reasonable solution may be expressed in 

terms n3, so if n = 100, then when we cube it, we get 

100,000
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Unreasonable time

 When we come across a problem that runs in 
unreasonable time, we see that for 100 inputs, the 
resulting function returns a value of 1.27 x 1030

 Which is the number 
1,270,000,000,000,000,000,000,000,000,000

 If the computer uses 1 second to process an input, 
that would be 
21,167,000,000,000,000,000,000,000,000 minutes, 
or 352,778,000,000,000,000,000,000,000 hours, or 
1,469,910,000,000,000,000,000,000 days or 
40,271,400,000,000,000,000,000 years

6



4/19/2010

4

A side note

 1.27 x 1030 is just shy of the estimate of the total 

number of atoms in the observable universe, which is 

guessed to be about 4 x 1081

 These are the values if the function is 2n where n is 

the number of inputs.

 If we use another function n!, the result when n = 

100 is 9.3 x 10157 (larger than the estimate of the 

total number of atoms in the observable universe).
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Unreasonable Time

 Just because something runs in unreasonable time 

doesn’t mean we don’t keep trying to solve it in 

reasonable time.

 Sometimes, we can improve the way we think about 

things and get to solutions that are reasonable.

8



4/19/2010

5

A “Hard” Problem

 Example: Computer player for chess. The estimate for 

the total number of board configurations for chess is 

somewhere in between the values we mentioned on 

the previous slide (1050).  

 Therefore, for the computer player to know how to 

win, it needs to know each of those board 

configurations and how to win if the board is in that 

configuration.

 Well, sort of – there are shortcuts to this, which is 

how we got a computer that is able to play chess.
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Unreasonable Problems

 Putting together an n-piece jigsaw puzzle

 “Tetris” – not quite Tetris, but a similar class of 

problems using Tetris – like pieces

 Traveling Salesman

 Scheduling problems (N teachers, M hours, P classes) 

– schedule so that all P classes are covered so that no 

teacher is teaching at the same time two different 

classes, nor that the same class is being taught at the 

same time by two different instructors
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Unreasonable Problems

 We know that there are unreasonably-timed solutions 

to these problems in the general case, but for some if 

the variables (M, N, etc) are small, we can come up 

with reasonably-timed solutions.

 Also, for these problems, you can check to see if a 

proposed solution is in fact valid in reasonable time

 These problems belong to a specific class of problems 

with these characteristics.
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Some unanswered 
questions

 A currently un-answered (and potentially never-

answered) question is whether or not there are 

reasonably-timed solutions to our currently known 

unreasonably-timed solution problems.  We know 

that sometimes we can find reasonable solutions, but 

can we find general-case reasonably-timed solutions?

12



4/19/2010

7

Two more problems

 If given a description of a problem to solve and a 

solution to the problem designed by a student – can 

we write a program to verify that the program solves 

the problem?

 Can we write a program to verify that there are no 

infinite loops in a program?
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Answers…

 In fact, the answer is no to both of these questions.

 Furthermore, it’s not just a “I don’t think so”, it’s a 

provable fact that we will never be able to solve these 

problems.

 These problems exist in a class of problems known as 

“undecideable” problems – we know that we can 

never solve these problems using a computer.
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