
2/19/2010

1

CSE 113 A

February 15-19, 2010

Announcements

Lab 2 will begin this week in

recitation.

Lab 2 due Friday, March 5th.

Exam 2 – Friday, February 26th; in-

lecture review Wednesday, February

24th.

Review sheet posted on Schedule page

of course website.

2/19/2010

2

Monday Lecture Code

 Some things to note:

 In checkEdges method: We needed to get the width of

the world, so we first needed to get the world and

then needed to ask the world for its width.

getWorld().getWidth()

3

Monday Lecture Code

 In move method: I do not expect you to be able to

derive formulas to create movement taking into

account rotation. You can simply reuse this code as

needed to move based on degree of rotation.

 What is important is that you can move something

simply by taking its current location and changing

that slightly. Doing this repeatedly moves the actor.

4

2/19/2010

3

Monday Lecture Code

 When checking edges, we can avoid them by turning

or wrap – see example in code

5

Monday Lecture Code

 Detecting intersecting objects can be done using

getOneIntersectingObject method.

 This method can take as an argument a class that

represents the type of object we are looking for (like

canSee in Crab example).

 This method returns an Actor object that represents

what the current actor is intersecting with. If there is

no intersecting actor, the method returns null. Null is

a keyword in Java that represents the value of a null

reference (can be thought of as “no object”).

6

2/19/2010

4

Monday Lecture Code

 Change the image of an actor using setImage. Takes

as an argument a GreenfootImage which is created

with a string that represents the name of the file

where the image is stored. Can simply use any of the

built-in images, or can add your own to images folder

of the scenario and it is accessible within the

scenario.

7

If-statements

 We have been working a lot with if-statements to

determine choices in our programs. If we look at our

program execution with if-statements, it would look

something like this:

8

2/19/2010

5

More ways to choose

 We could create choice in programs that looks like

this:

9

More ways to choose

 That would be the notion of a choice when there is a

definitive path when a condition is true and another

path when the condition is false.

 In order to do this type of choice in code, we would

need to use if-else statements instead of just if-

statements.

10

2/19/2010

6

If-else Syntax

if(/*boolean expression*/)

{

//code to be executed if boolean expression is true

}

else

{

//code to be executed if boolean expression is false

}

11

Wednesday Lecture Code

 Create a method named checkForCars in the

ambulance class that checks to see if the Ambulance

intersects with a car.

 If the Ambulance does intersect with a car, then

check to see if that car has hit more than 5 barrels.

If the car has hit more than 5 barrels, then the car

should be removed from the scenario. Otherwise the

car should be turned into a flower.

12

2/19/2010

7

Wednesday Lecture Code

 So, in the checkForCars method, we first wrote the

code to getOneIntersectingObject of type Car and stop

the scenario when it happens. This code is a

copy/edit of the code we used to determine if the

ambulance was intersecting with a barrel.

 Then, we removed the line that stopped the scenario

to replace it with the code we want to happen when

an ambulance and a car collide.

13

Wednesday Lecture Code

if(/*car has hit more than 5 barrels*/)

{

//remove car from world

}

else

{

//turn car into flower

}

14

2/19/2010

8

Wednesday Lecture Code

 We can use the code we had before for turning a

barrel into a flower to turn a car into a flower

(copy/paste).

 We know about a method to add an object to the

world. There is a similar method to remove an object.

We need to make sure that we get the world first and

then remove the object:

getWorld().removeObject(car);

15

Wednesday Lecture Code

 Now we need to figure out how many barrels the car
has hit.

 We need to create a method inside the Car class that
will report on how many barrels a car has hit. Recall
that cars are already keeping track of how many
barrels they hit in an instance variable. The method
we write simply reports the value of that variable.

 So, in the if-statement we can call that method after
we write it:

if(car.getBarrelsHit() > 5)

16

2/19/2010

9

Wednesday Lecture Code

 In order to call the new method on the car, we needed

to make one change to the way we treat the “actor”

that is returned from the call to

getOneIntersectingObject(Car.class).

 Originally the code looked like this:

Actor car = getOneIntersectingObject(Car.class)

 Now it looks like this:

Car car = (Car)getOneIntersectingObject(Car.class)

17

Wednesday Lecture Code

 The (Car) is a typecast. We are taking the Actor that

is returned and telling Java to treat it as though it

were a Car (which it is – we asked for intersecting

objects of type Car after all).

18

2/19/2010

10

If-else if Statements

 We have to make a change to the checkForEdges code

from last time.

 We are going to create an if-else if structure in the

top/bottom and left/right edge checks.

if(/*actor at right*/) { /* do something */}

else if(/*actor at left*/) { /* do something */ }

19

Wednesday Lecture Code

 Originally, we had all the edges as if’s. This created a

picture like this:

20

2/19/2010

11

Wednesday Lecture Code

 When we put the if-else ifs in, we have this picture:

21

Friday Lecture Code

 Write a method so that when the ambulance reaches

a certain point on the screen (let’s say 137), all of the

barrels are removed from the world.

 How would we write the code for this?

 First, we can notice that there is a condition that must

be met, so we need an if-statement

22

2/19/2010

12

Friday Lecture Code

if()

{

}

 We need to determine what goes into the () and what

goes into the { }

 Tip: Write them out in English first and then

translate into Java code.

23

Friday Lecture Code

 The condition is looking for when our ambulance’s x-
coordinate is 137.

 The code we execute removes all barrels from the
world.

 Tip: Be sure to refer to the documentation for the
World and Actor classes when we are trying to do
something new – there may be methods defined that
can help us. (This was the case with removing the
barrels from the world).

24

2/19/2010

13

Exercise (will be answered
on Monday)

 Make the ambulance add 5 flowers to the screen

when the ambulance is at y = 36.

25

