
2/22/2010

1

February 22-26, 2010

CSE 113 A

ANNOUNCEMENTS

 Lab 2 due Friday, March 5th.

 Exam 2 – Friday, February 26th; in-lecture
review Wednesday, February 24th.

 Software installation help in Baldy 21

 Tuesday 2/23 7pm-8pm
Monday 3/1 4pm-5pm

2/22/2010

2

EXERCISE (FROM FRIDAY’S

LECTURE)

 Make the ambulance add 5 flowers to the screen
when the ambulance is at y = 36.

3

EXERCISE

 When inside the method, we brainstormed what
types of actions the method would need to do.

 We decided that we needed an if-statement

 We did not need an else – why?

 Because there was no “other” alternative. If a
condition was met, we performed an action. If it was
not, we simply did nothing. If there was another
action to perform, then we would have needed an
else.

 Then, we decided what our condition for the if should
look like (if our y-coordinate was 36)

4

2/22/2010

3

EXERCISE

 Then we decided what should happen if the condition
was met (add 5 flowers to the world)

 We then began to code both the condition and the
insertion of the flowers into the world.

 Creating 5 flowers at a time was as simple as copying and
pasting the code to create one flower, five times. To
create 50, paste 50 times, 500, paste 500 times. But
there must be a way we can get the computer to do all
this repetition…

5

LOOPS

 Mechanism that allows our programs to repeat

 There are many different types of loops, we
focused today on one called the for-loop

 The for-loop is good for counting (doing things a
specific number of times).

6

2/22/2010

4

FOR-LOOP (BASIC SYNTAX)

for (/* initialization, condition, increment */)

{

//code to be repeated

}

7

FOR-LOOP (INITIALIZATION)

 The initialization part of a for-loop (typically)
creates and initializes a loop counter. The loop
counter is simply a variable whose value we can
check (in the condition part) and change (in the
increment part).

 A sample initialization step looks like this:

int count = 0;

 You can name your variable whatever you’d like
and initialize it to whatever value is appropriate
to your task.

8

2/22/2010

5

FOR-LOOP (CONDITION)

 The condition part of a for-loop tells the loop when to
stop. While the condition is true, the code will keep
getting repeated, when it is false, the repetition will stop.
Typically, the condition involves the loop counter
variable’s value.

 A sample condition looks like this:

count < 100;

 The condition must evaluate to true or false (must be a
boolean expression) and typically gives a clue to the
number of times the loop will execute.

9

FOR-LOOP (INCREMENT)

 In increment part of a for-loop indicates how the loop
counter will be incremented. In many cases, the counter
is incremented by one each time (so it keeps count of
how many times the loop has executed).

 A sample increment step looks like this:

count = count + 1

 Note that there is a (syntactic) shortcut for the above that
is typically used:

count++

10

2/22/2010

6

FOR-LOOP (REPEATED CODE)

 This is the code that is to be repeated. There is
no restriction on what is placed in the {}. Any
valid Java code can be repeated.

11

FOR-LOOPS (A NOTE ABOUT

THESE GUIDELINES)

 The usage of the for-loop described here corresponds with its most
common usage. However, the only thing that the Java language
specifies is that within the parentheses there be three statements
separated by commas and that the statements in between the {}
are the code that is repeated.

 So, that means

for(;;)

{

}

 Is a perfectly syntactically correct for-loop. That loop will run
forever (it will never stop), but perform no actions. This is not
pointed out to panic anyone, but rather to indicate that there may
be other uses of the for loop that you can see that do not conform
to the usage we’ve discussed here.

12

