Announcements

Lab 7 due next week

Exam 4 handed back Wednesday
Friday

Exam 5 Review Wednesday 4/14
Exam 5 Friday 4/16

Lab 8 due Monday 4/26

Final exam review session: TBA
Final exam Thursday 4/29

4/7/2010

Lab 7 tips

» Get all ships to appear on
screen when game starts

 Then, work on the buttons

— Button clicked sets the ship in the
holder

— Clicking on board places ship
(doesn’t matter location)

— Clicking on board places ship
(where you clicked)

Lab 7 Tips

« Then, work on whether ships fall
off the edges

» Then, work on ships that overlap
each other

4/7/2010

4/7/2010

Lab 7 tips

* Remember, that when a user
clicks on the screen with the
mouse, the location that was
clicked is carried in a MouseEvent
object that is used as the
parameter to the mouseClicked
method. You can ask this object
for its getPoint() to find out where
exactly the user clicked.

4/7/2010

—ship Plaement STEER. |\ T

‘ amk ,o(e«sw.,, K

s aw() +F A
\G\LL%P \ %
-

4/7/2010

Types

» Declare a variable whose type is
java.util.Collection and then
assign it an instance of a
java.util.LinkedList

* Why is this allowed?

— Collection is a supertype of
LinkedList

— LinkedList is a subtype of
Collection

Types - Another
Example

* graphics.IGraphic circle = new
graphics.Ellipse();

« What are the implications of
doing this?
— circle has a declared type of

IGraphic and an actual type of
Ellipse

Ren_ & variahle’s &Qd"@ﬁfb
(s diffurt Han o ashel type
‘\’?I\k D"&"A V\Q/M W are a”bsﬂ&

tooadd are dhos Lo e

e Wl ot Aroon octoad
e

Previous Slide

* Important concept

« Backbone of subtype
polymorphism

» Polymorphism is an extremely
powerful form of selection that
can be used inside object-
oriented programs

4/7/2010

4/7/2010

&/Zi TP& vac Mome = ned ”(ﬁﬂ%z//)
N/

wplemants
C(Wﬁmwla’ﬁcg

Solbclaw
Sobela

Interfaces

» Purely abstract entities
* No implementation at all

« Can not create an instance of
one

e Contain method headers
followed by ;

« Can contain constants, but not
instance variables or private
methods

Interfaces

« Classes can implement an
interface or more than one
interface

Inheritance

« Superclass/subclass relationship

« Subclass inherits all public
members, but never private ones.

« Subclasses also inherit protected
members.

— Protected is an additional access
control modifier that specifies access
within the classes and within the
class’ subclasses.

4/7/2010

4/7/2010

Inheritance

» A class can extend exactly one
other class.

» All classes in Java use
inheritance.

* |f no superclass explicitly given,
the class extends
java.lang.Object

Inheritance

* Interfaces can use inheritance
as well.

* |Interfaces can extend one or
more other interfaces.

4/7/2010

Abstract classes

 Straddle the middle between
interfaces (no implementation) and
concrete classes (fully
implemented).

* Can not create an instance of an
abstract class.

» Abstract classes can implement
one or more interfaces.

» Abstract classes can extend exactly
one other class.

Why would we use
abstract classes or
interfaces?

* It allows us to group classes into
groups of related entities.

* |t allows us to specify certain
functionality classes need to
have and ensure its
implementation via compiler
enforcement.

10

For abstract classes...

* It allows us to share some
implementation amongst
subclasses and yet still require
additional implementation
through use of declared abstract
methods.

Abstract classes

« Have keyword abstract in their
class header.

 Abstract methods have keyword
abstract in their method header
and have no method body, but
rather a ; where the body should

4/7/2010

11

fuckor dndining

When o class WW‘W’W

(NTa: e a(,)g\'m@a W/
V\S\’Y\AL\O(46 He cobclono S \\9\\3/\"&&
M A congrructor og e

gogerda/x)

Constructor chaining

* No problem if there is a superclass
constructor that takes no
parameters. Java will call the
constructor automatically in this
case.

« If all the constructors of the
superclass need parameters, then
the subclass must explicitly call
one of the superclass’
constructors using super.

4/7/2010

12

Example from Lab 7

public class State extends AShipPlacementState {
public State() {
//need to call super with appropriate
/larguments — an 1GameEngine

}

Example from Lab 7

public class State extends AShipPlacementState {
public State() {
super(); //won’t work — needs arguments

}

4/7/2010

13

Example from Lab 7

public class State extends AShipPlacementState {
public State() {
super(new GameEngine());
//will work, but not for Lab 7

Example from Lab 7

public class State extends AShipPlacementState {
public State(IGameEngine engine) {
super(engine);
/Iwill work, good idea for Lab 7

4/7/2010

14

4/7/2010

Example from Lab 7

public class State extends AShipPlacementState {
public State() {
GameEngine e = new GameEngine();
super(e);
/Iwon’t work — super must be first line in
//constructor

Overriding

* When you use inheritance and
inherit methods from the
superclass, you can choose to
override (change) the method in
the subclass.

15

Accessors & Mutators

 Get & Set methods
» Accessor = get method
* Mutator = set method

Accessors

Get in name (usually)

Returns a value

Therefore, return type that is not
void

Do not take parameters

Body contains:
return value;

Where value is the value being
returned.

4/7/2010

16

Mutators

Set in name (usually)
Change values

Therefore, parameters needed
to specify what new value is

Return type is void

Body contains:
_instanceVar = paramName;

4/7/2010

17

