
3/26/2010

1

CSE 115/503

March 22-26, 2010

Announcements

• Lab 6 posted this week – 1 week lab

• Exam 3 will be handed back in 

recitation this week unless

– You are in A6

– You did not indicate a recitation section

• Adrienne has your exams in either of the 

above cases

• Exam 4 Review Monday 3/29

• Exam 4 Wednesday 3/31

– There will be lecture after the exam

• No class on Friday 4/2

– Adrienne will be out of town 4/1-4/4



3/26/2010

2

Exam 3 Results

Min 6      (17 total F’s)

Median 93.5

Average 82.69

Max 100      (80  total A’s)

Collections

• If we want to be able to keep 

track of and use a group of 

objects, we need a way to store 

that group.

• In a single variable, we can only 

hold onto one object, so we 

need a variable that will hold 

onto an object that holds onto 

many other objects.



3/26/2010

3

java.util.Collection

• Interface that is the root of the 

collection hierarchy. 

• Interfaces tell us about 

functionality – in this case tell us 

what collections can do.

• There are other classes in 

java.util that implement this 

interface that we can create 

instances of.

Collection<E> - What 

is the <E>?

• The <E> represents a generic 

type

• Collections contain many 

objects, the <E> tells us what 

type of object is in the collection.

• When you are actually creating 

a collection, you would 

substitute the name of type for 

E.



3/26/2010

4

Types

• What things qualify as a type?

– Interface

– Class

Collections

• Declare a variable that holds 

onto a collection:

• java.util.Collection<E> name;



3/26/2010

5

Creating a collection

• new java.util.LinkedList<E>();

• Remember that you can create 

an instance of any class that 

implements the Collection 

interface.

• Remember to assign that new 

instance to the variable you 

declared.

Putting stuff into a 

collection

• The add method allows us to 

insert elements into a collection.



3/26/2010

6

Iterating over a 

collection

• If you want to “visit” every 

element in a collection, there is 

a piece of syntax built into Java 

to help us do that.

• It is called a for-each loop

For-each loop

• Syntax

for(TypeOfElementInCollection name: collection) {

//what to do with each element

}

• TypeOfElementInCollection would match 

the E in the <E> when you declared and 

created the collection.



3/26/2010

7

For-each loop

• name is a name you assign to the 

element.  This is like a local variable.  

As the collection is iterated over, each 

element in the collection will be 

assigned to the variable name.  This is 

what allows you to do things with each 

element.

For-each loop

• collection is the reference to the 

collection that you are iterating over.  

Often, it will be the name of the 

variable for the collection.

• Inside the loop’s body, you would 

write the code that will be executed for 

every element in the collection.



3/26/2010

8

Collection types

• LinkedLists, or more generally, 

Lists (List is an interface in 

java.util), represent one type of 

collections.

• These collections are often 

categorized as Bags.

• Bag collections are simply groups 

of elements.  There may be an 

ordering of those elements, or 

there may not be.

Examples of Bags

• Real-world

– Book bag

– Piece of luggage

– Grocery list

– To-do list

– Line at bank



3/26/2010

9

Examples of Bags

• Computing 

– Linked List

– Stack

– Queue

– Set

• We will not be covering these in 

depth.  For purposes of collections 

we will need this semester, we will 

most often use a LinkedList when 

we need a Bag.

Collection Types

• The other general type of 

collection is called a Map

• Maps map a key to a value



3/26/2010

10

Examples of Maps

• Real-world

– Dictionary

– Phone Book

– Index in a book

Examples of Maps

• Computing

– Hash map

– Hash table

• We will be using a Hash Map 

this semester if we would like to 

map keys to values



3/26/2010

11

Maps in Java

• There is an interface 

java.util.Map that is part of the 

collections framework, but Maps 

are not technically considered 

collections by Java.

• This means the methods on 

Maps are potentially different 

than those on Collections.

– Meaning their names, parameters, 

and return types could be different

Declaring a HashMap

java.util.HashMap<K, V> name;

• K is the type of the key, V is the 

type of the value.

• Any type can be a key or value, 

but keys need to ensure that they 

implement the methods hashCode

and equals.  Any standard object 

in Java implements these two 

methods, but classes you write 

may not.



3/26/2010

12

Creating a HashMap

• new java.util.HashMap<K, V>();

• Remember to use this on the 

right hand side of an assignment 

if you want to maintain a 

reference to the hash map.

Inserting into a 

HashMap

• map.put(X, Y);

• Where map is the name of the 

variable referring to the map, 

and X and Y are the objects 

(object references) of what is to 

be inserted as the (key,value) 

pair.



3/26/2010

13

Getting things out

• You would use the key to 

retrieve elements from a 

HashMap.

map.get(X);

• Would return the value 

associated with the key 

represented by the object 

reference X.

Iterating over a Map

• It is not as common to actually 

iterate over the elements in a 

hash map due to the very nature 

of what a mapping is.

• However, you are able to do it.  

You can separately iterate over 

the keys of the map or the 

values.



3/26/2010

14

For-each on a Map’s 

Keys

for(KeyType k: mapName.keySet()) {

//what to do for each key

}

For-each on a Map’s 

Values

for(ValueType v: mapName.values()) {

//what to do for each value

}



3/26/2010

15

Repetition

• The ability for a program to 

repeat a task

• Java has five different repetition 

mechanisms built in

– Three types of general purpose 

loops

• for, while, do-while

– One type of special purpose loop

• for-each loop

– Recursion

Repetition – for loop

• Syntax

for(initialization; expression; increment) {

//code to be repeated

}

• initialization – typically we create a 

loop counter and assign it an initial 

value.



3/26/2010

16

Repetition – for loop

• Syntax

for(initialization; expression; increment) {

//code to be repeated

}

• expression – this expression is a 

boolean expression (one that 

evaluates to true or false) and 

usually represents the end condition 

for the counter variable.

Repetition – for loop

• Syntax

for(initialization; expression; increment) {

//code to be repeated

}

• increment – change the value of 

the loop counter by some 

increment (or decrement)



3/26/2010

17

Repetition – for loop

• Syntax

for(initialization; expression; increment) {

//code to be repeated

}

• code to be repeated – the code we 

want repeated each time.  This is 

called the body of the loop.

Repetition - Example

• Write a loop that executes 50 times

for(Integer count = 1; count <=50; count++) { 

}



3/26/2010

18

Equivalent Examples 

(Some)

for(Integer count = 0; count < 50; 
count++) { 

}

for(Integer count = 1; count < 51; 
count++) { 

}

for(Integer count = 0; count <= 49; 
count++) { 

}

Equivalent Examples 

(A few more)

for(Integer count = 1; count < 51; count = 
count + 1) { 

}

for(Integer count = 50; count > 0; count--) { 

}

for(Integer count = 0; count < 100; count = 
count + 2) { 

}



3/26/2010

19

For-loop (Execution)

• The order the parts of the loop 

are executed in are perhaps 

best described in terms of a 

diagram.



3/26/2010

20

Selection

• Selection is the ability to choose 

in a program.

• Java has three built-in 

mechanisms for selection

– If-statements (including if/else 

statements)

– Switch/case statements

– Polymorphism

If-statement (Simple)

• Syntax

if(booleanExpression) {

//code to be executed if booleanExpression is true

}

• A booleanExpression is an expression 

whose result is a boolean value (either 

true or false).



3/26/2010

21

If-statement 

(Execution)

• Again, a diagram indicating the 

execution of an if-statement.



3/26/2010

22

Lecture Code

• Please make sure to look at 

Lab4Modified, 

Lab4ModifiedVersion2, and 

Lab4ModifiedVersion3 to see 

various examples of these ideas

Equals

• In version 3, we used a method 

named equals to determine if a 

color was equal to the color red.

• equals is a method that you can 

write for objects that will help 

determine equality specific to a 

particular type.

• The equals method returns a  

boolean value.


