
4/8/2011

1

CSE 115/503
April 4 - 8, 2011

Announcements

 Lab 6 due this week before your recitation
meets

 Lab 7 starts this week in recitation (due in 2
weeks)

 Lab 8 (continuation of Lab 7) will be due May
2nd for all sections

 Grades on UBLearns

 If you have not come to see me about an issue,
please do so.

 Exam 5 is Monday, April 25th

4/8/2011

2

If-statement

 Execute some piece of code based on an
explicitly specified condition.

 In Java, conditions must be boolean
expressions.

 Boolean expressions are expressions that
produce boolean results.

 A boolean is a type whose only two values are
true and false.

If-statement syntax

if(condition) {

//Code to be executed if condition is true.

}

 Question: What happens if the condition is
false?

4/8/2011

3

Types

 Remember back to the Drawing class in our
example.

 It declares a variable whose type is
java.util.Collection and then assigns it an
instance of a java.util.LinkedList

 Why is this allowed?

 Collection is a supertype of LinkedList

 LinkedList is a subtype of Collection

Types – Another Example

graphics.IGraphic circle = new graphics.Ellipse();

 What are the implications of doing this?
 circle has a declared type of IGraphic and

an actual type of Ellipse

4/8/2011

4

IMPORTANT

 When there is a difference between a
variable’s declared type and actual type, the
only methods that can be called on the
object are those declared in the declared
type. The methods that are actually
executed are those in the actual type.

Previous Slide

 Important concept

 Backbone of subtype polymorphism

 Polymorphism is an extremely powerful
form of selection that can be used inside
object-oriented programs

4/8/2011

5

DeclaredType varName = new ActualType();

Interface Implementing Class

Are there other possibilities for the declared and actual types?

Superclass Subclass

Abstract Class Subclass

Abstract classes

 Straddle the middle between interfaces (no
implementation) and concrete classes (fully
implemented).

 Can not create an instance of an abstract class.

 Abstract classes can implement one or more
interfaces.

 Abstract classes can extend exactly one other
class.

4/8/2011

6

Why would you make a class
abstract?
 To allow subclasses to share some common

implementation but also enforce the
inclusion of certain other methods in the
subclass.

How do you make a class
abstract?
 You need to declare the class to be abstract

 Typically you would also include at least one
abstract method inside the class (although it
is not required).

 abstract public class identifier { … }

4/8/2011

7

Abstract Method Syntax

abstract visibility returnType name (…);

What do you do with an abstract
class?
 You can’t create an instance of one, so you

must create a class that extends it (inherits
from it.)

public class ClassName extends AbstractClassName

{

}

4/8/2011

8

 When a class extends another class:

 The subclass inherits all public and protected
members of the superclass.

 private members are never inherited.

 protected is a visibility that makes members
accessible to subclasses, but not available to
other classes outside the inheritance hierarchy

extends keyword

subclass superclass

child class parent class

Constructor Chaining

 When a class extends another (abstract or
concrete) class, the constructor of the
subclass is obligated to call the constructor
of the superclass.

4/8/2011

9

Constructor chaining

 No problem if there is a superclass constructor
that takes no parameters. Java will call the
constructor automatically in this case.

 If all the constructors of the superclass need
parameters, then the subclass must explicitly
call one of the superclass’ constructors using
super.

Using super in constructor

public class Subclass extends Superclass {

public Subclass() {

super();

}

} Fill in arguments appropriately.

4/8/2011

10

Inheritance

 A class can extend exactly one other class.

 All classes in Java use inheritance.

 If no superclass explicitly given, the class
extends java.lang.Object

Inheritance

 Interfaces can use inheritance as well.

 Interfaces can extend one or more other
interfaces.

4/8/2011

11

Interfaces

 Purely abstract entities

 No implementation at all

 Can not create an instance of one

 All methods are abstract

 Can contain constants, but not instance
variables or private methods

Interfaces

 Classes can implement an interface or more
than one interface

4/8/2011

12

Overriding

 When you use inheritance and inherit
methods from the superclass, you can
choose to override (change) the method in
the subclass.

Accessors & Mutators

 Get & Set methods

 Accessor = get method

 Mutator = set method

4/8/2011

13

Accessors

 Get in name (usually)

 Returns a value

 Therefore, return type that is not void

 Do not take parameters

 Body contains:
return value;

Where value is the value being returned.

Mutators

 Set in name (usually)

 Change values

 Therefore, parameters needed to specify
what new value is

 Return type is void

 Body contains:
_instanceVar = paramName;

