
2/4/2011

1

CSE 115/503
January 31 – February 4, 2011

Announcements

 Pick up (and READ) syllabus if you have not
already done so.

 Syllabus Confirmation “test” on UBLearns
needs to be completed by 1/31/11.

 Recitation Change forms have been
processed and emails sent to those who
turned one in to me.

 Lab 1 begins this week in recitation

 Exam 1 – Monday, February 7 (first half of
lecture – there will be class following the
exam)

2/4/2011

2

Creating Objects

 A look inside the machine

2/4/2011

3

(part of) memory

107

108

109

110

111

112

113

114

115

evaluating a „new‟ expression

used

available

available

available

available

available

available

available

used

107

108

109

110

111

112

113

114

115

When evaluating an

expression like ‘new

example1.Terrarium()’, the

operator ‘new’ first

determines the size of the

object to be created (let us

say it is four bytes for the

sake of this example)

2/4/2011

4

evaluating a „new‟ expression

used

reserved by „new‟

reserved by „new‟

reserved by „new‟

reserved by „new‟

available

available

available

used

107

108

109

110

111

112

113

114

115

Next, new must secure a

contiguous block of memory four

bytes large, to store the

representation of the object.

evaluating a „new‟ expression

used

10101010

10101010

10101010

10101010

available

available

available

used

107

108

109

110

111

112

113

114

115

Bit strings representing the

object are written into the

reserved memory locations.

2/4/2011

5

evaluating a „new‟ expression

used

10101010

10101010

10101010

10101010

available

available

available

used

107

108

109

110

111

112

113

114

115

The starting address of the

block of memory holding the

object’s representation is the

value of the ‘new’ expression.

This address is called a

‘reference’.

.

evaluating a „new‟ expression

107

108

109

110

111

112

113

114

115

A similar thing happens

when we evaluate

another ‘new’ expression

like ‘new example1.Ant()’.

used

used

used

used

used

available

available

available

used

2/4/2011

6

used

used

used

used

used

11110000

11110000

available

used

evaluating a „new‟ expression

107

108

109

110

111

112

113

114

115

Supposing that an

example1.Ant object

occupies two bytes of

memory, new reserves a

contiguous block of two

bytes, writes bit strings

representing the object to

those memory locations,

and the starting address of

this block of memory is the

value of the ‘new’

expression.

DrJava‟s response

When we evaluate these „new‟ expressions in
DrJava, what is the response we get?

> new example1.Terrarium()

example1.Terrarium[frame0,0,0,608x434,layout=java.awt.Bord
erLayout,title=,resizable,normal,defaultCloseOperation=EXIT_
ON_CLOSE,rootPane=javax.swing.JRootPane[,4,30,600x400,la
yout=javax.swing.JRootPane$RootLayout,alignmentX=0.0,align
mentY=0.0,border=,flags=16777673,maximumSize=,minimum
Size=,preferredSize=],rootPaneCheckingEnabled=true]

2/4/2011

7

DrJava‟s response

After DrJava evaluates the expression, it must
print the value. The way Java works when a
reference is printed is that a textual
representation of the object it refers to is
produced (as defined by the object itself)

 We‟ve seen how to create an object.

 But where does the object come from?

 How does DrJava know what an
example1.Terrarium() object is?

Where do objects come from?
(The “birds and bees” lecture)

2/4/2011

8

Writing Java Code

 Programmer writes Java code (in an editor,
or at the DrJava prompt)

 It is compiled (translated) into a form the
computer will understand (by the compiler)

Objects exist only at runtime

Objects exist only
at runtime

Objects do not exist
while the programmer
writes the program,
except in their minds.
The programmer writes
the code to create the
object (new…)

Compiler translates

2/4/2011

9

Whoa, whoa, wait a minute. You mean
to tell me that as object-oriented
programmers, we don‟t write objects?

 That‟s right – we write class
definitions.

 Objects are instances of classes.

 Classes are instantiated only at
runtime.

The moral of our story

 So, we will spend a great deal of
time writing class definitions and
only a small amount of time writing
the code to create objects.

 But, at run time, it is the objects
that actually do the work – the work
we‟ve defined them to do when we
wrote the class definitions.

2/4/2011

10

A variable is:
(at its most basic)

 a storage location in memory

 for example, location 120:

116

117

118

119

120

121

122

123

124

space for a variable

2/4/2011

11

Where we left off

 Trying to put two caterpillars in the same
terrarium

 Couldn‟t add the second caterpillar to the
first terrarium because we did not have
access to the reference for the terrarium

 Recall: When we evaluate the expression

new example1.Terrarium()

we get back a reference to the terrarium object

2/4/2011

12

Where we left off

 Values returned after evaluating
expressions are lost if:

not used right away

or remembered (stored somehow)

Variables

 Name

 Location

 Type

 Value

 Scope

 Lifetime

2/4/2011

13

2/4/2011

14

2/4/2011

15

Rules – Identifiers can

 Only contain letters, digits, or underscores

 Only begin with letters or underscores

 NOT be keywords

2/4/2011

16

