
C S E 3 0 6
S O F T W A R E Q U A L I T Y I N P R A C T I C E

Dr. Carl Alphonce
alphonce@buffalo.edu
343 Davis Hall

www.cse.buffalo.edu/faculty/alphonce/FA24/CSE306

R O A D M A P

• Announcements

• Course overview

• Syllabus highlights (full syllabus on website)

• Academic Integrity

• Tasks for this week

• Setting the stage

A N N O U N C E M E N T S

Weekly schedule:

• Lecture on Tuesday morning, lab on Tuesday afternoon

• Lecture on Thursday morning, lab on Thursday afternoon

• My OH: M 10:15 - 11:45, T 9:15 - 10:45

Labs begin TODAY:

• Expectation: you should (mostly) complete within lab period.

• exception: special consideration given for add/drop: you can make up work assigned
before you were registered by the day after add-drop.

• Attendance taken in lab and factors into your grade.

L A B S I N B A L D Y 1 9

• Labs are held in Baldy 19

• Bring your own laptop (or use a departmental laptop)

• If using own machine, ensure you can connect
remotely to turing.cse.buffalo.edu or
cerf.cse.buffalo.edu

• You can code locally, but do NOT use VSCode for
remote development.

http://turing.cse.buffalo.edu
http://cerf.cse.buffalo.edu

FIX
BAD
CODE

WRITE
GOOD
CODE

C O U R S E O V E R V I E W

C O U R S E O V E R V I E W

FIX
BAD
CODE

WRITE
GOOD
CODE

gitvalgrind

compiler

shell scr
ipt

debugger

profiler

task board

teammates

automated testing
sound

process

make

and more!

• (LEX) Twenty-two lab-based exercises, two per week, done in lab
throughout the semester.

• (PRE)/(PST) Team projects focused on process. PRE is a pre-
assessment in weeks 1 - 3 of the semester. PST is a post-assessment
in weeks 12 and 13. Students are required to document their
development/debugging process.

• (EXP) Two three-week team projects. These projects ask student
teams to apply the tools and techniques they have been taught up to
that point in the course to existing code. Students are required to
document their use of the tools and the results they obtained.

• (LPR) A two-part in-lab practical exam, in weeks 13 and 14.

S Y L L A B U S H I G H L I G H T S
A C T I V I T I E S • A S S E S S M E N T • G R A D I N G

S Y L L A B U S H I G H L I G H T S
A C T I V I T I E S • A S S E S S M E N T • G R A D I N G

L E A R N I N G O U T C O M E
I N S T R U C T I O N A L

M E T H O D S
A C T I V I T Y

Employ static and dynamic analysis tools to detect
faults in a given piece of software.

Lecture-based instruction

Lab-based hands-on exercises.

LEX
LPR
PRE/PST
EXP

Employ profiling tools to identify performance
issues (both time and memory) in a given piece of
software.

Employ testing frameworks to write tests that fail in
the presence of software faults, and pass otherwise

Employ a structured, methodical approach to
detecting, testing, identifying and correcting
software faults.

LPR
PRE/PST
EXP

Work productively as a member of a software
development team.

PRE/PST
EXP

• Each piece of student work will be assessed using
performance indicators, each of which has a rubric with
four performance levels:

• “insufficient evidence”
• “developing”
• “secure”
• “exemplary”

• Each performance indicator is assessed independently
of the others.

S Y L L A B U S H I G H L I G H T S
A C T I V I T I E S • A S S E S S M E N T • G R A D I N G
Assessment using Performance indicators (PIs)

• The overall grade for a piece of work is determined by comparing actual
performance relative to performance expectations, which increase
throughout the course.

• Early in a topic the expectation is that performance is close to the
"insufficient evidence" level.

• Towards the middle of the topic we expect students to be at or above
"developing".

• Towards the end of the course we expect students to be at or above the
"secure" level.

• Specific rubrics and performance expectations are available in UBLearns for
each assignment.

S Y L L A B U S H I G H L I G H T S
A C T I V I T I E S • A S S E S S M E N T • G R A D I N G
Assessment -> Grades

I N D I V I D U A L (6 0 %) T E A M (3 0 %) M I X E D

L E X
3 0 %

P R E
2 %

A C T
1 0 %

L P R
3 0 %

E X P
6 % + 6 %

P S T
1 6 %

S Y L L A B U S H I G H L I G H T S
A C T I V I T I E S • A S S E S S M E N T • G R A D I N G
Overall Grade Breakdown

C O D E C O M P L E T I O N
V S

P R O C E S S

• INDIVIDUAL WORK: You must write code, answer
questions, and employ tools as an individual, and may
not seek direct assistance or answers from classmates.

• TEAM WORK: You and your teammates must write the
code by together - everyone must contribute.

• You may look up (but must cite!) resources for the
necessary algorithms and data structures.

S Y L L A B U S H I G H L I G H T S
A C A D E M I C I N T E G R I T Y

TA S K S F O R T H I S W E E K
Teams & Labs

• Form teams of size 3 or 4 this week, by Thursday's lab
if possible (use Piazza's "Search for Teammates" post)

• I recommend all team members attend same lab, but
not required.

• Labs start this week.

• One member of each team must make a private post
in Piazza with the UBITs of each person on their team.

(P R E) P R O C E S S P R O J E C T

Instructions:
posted on website once teams are formed

Activity log:
keep track of how/when you work

(format given in instructions)

Warm-up on C programming:
Document your programming

process at this point in the course

(P R E) P R O C E S S P R O J E C T
Compiler

• use gcc compiler with C11 standard

• You can work on any machine, but test on
cerf.cse.buffalo.edu (this is our reference system)
before submitting: that's where we'll grade!

• If you have trouble connecting to cerf, try
turing.cse.buffalo.edu (same filesystem is mounted).

S E T T I N G T H E S TA G E
Is this code buggy?

#include <stdio.h>

int main(void) {
 printf("%s\n","Hello, world.");
 return 0;
}

S E T T I N G T H E S TA G E
Is this code buggy?

#include <stdio.h>

int main(void) {
 printf("%s\n","Hello, world.");
 return 0;
}

It depends - what was the
specification for the program?

S E T T I N G T H E S TA G E
Is this code buggy?

#include <stdio.h>

int main(void) {
 printf("%s\n","Hello, world.");
 return 0;
}

It depends - what was the
specification for the program?

Should the program check
the return value of printf?

S E T T I N G T H E S TA G E
Is this code buggy?

#include <stdio.h>

int main(void) {
 printf("%s\n","Hello, world.");
 return 0;
}

It depends - what was the
specification for the program?

Should the program check
the return value of printf?

What is the return
value of printf?

2 0 1 7 TA X TA B L E (I N D I V I D U A L)

https://taxfoundation.org/2017-tax-brackets

I S T H I S C O D E B U G G Y ?
Does this implement the table on the previous slide?

double f(double x) {
 if (x < 9325) { return 0.1 * x; }
 if (x < 37950) { return 932.50 + 0.15 * (x - 9325); }
 if (x < 91900) { return 5225.25 + 0.25 * (x - 37950); }
 if (x < 191650) { return 18713.75 + 0.28 * (x - 91900); }
 if (x < 416700) { return 46643.75 + 0.33 * (x - 196150); }
 if (x < 418400) { return 120910.25 + 0.35 * (x - 416700); }
 return 131505.25 + 36.9 * (x - 418400);
}

I S T H I S C O D E B U G G Y ?

double f(double x) {
 if (x < 9325) { return 0.1 * x; }
 if (x < 37950) { return 932.50 + 0.15 * (x - 9325); }
 if (x < 91900) { return 5225.25 + 0.25 * (x - 37950); }
 if (x < 191650) { return 18713.75 + 0.28 * (x - 91900); }
 if (x < 416700) { return 46643.75 + 0.33 * (x - 196150); }
 if (x < 418400) { return 120910.25 + 0.35 * (x - 416700); }
 return 131505.25 + 36.9 * (x - 418400);
}

The code also doesn't protest if x < 0.

How can we develop software to minimize risk of
errors and maximize chance bugs are discovered?

W H AT W E ’ L L B E D O I N G I N T H I S
C O U R S E

• Learn tools to explore program structure and behavior.

• Consider correctness relative to a specification and
performance relative to a requirement.

• Employ a methodical approach to tracking down,
identifying, documenting and fixing problems with
code.

• Employ a methodical approach to developing code.

S TAT I C V S D Y N A M I C
P R O G R A M A N A LY S I S

• static analysis - done on program without executing it

• dynamic analysis - done on program by executing it

