
C S E 3 0 6
S O F T W A R E Q U A L I T Y I N P R A C T I C E

Dr. Carl Alphonce
alphonce@buffalo.edu
343 Davis Hall

www.cse.buffalo.edu/faculty/alphonce/FA24/CSE306

L AT E J O I N E R S A N D
M I S S E D S U B M I S S I O N S

• I update the rosters in Piazza/AutoLab/TopHat regularly from the UBLearns
classlist (last update to TopHat was ~5 minutes ago).

• If you joined the recently it may take a day (possibly two) for the changes to
propagate through all the systems.

• We will NOT be strict on the deadlines for LEX01, LEX02, and LEX03 (to
accommodate students registering through end of add/drop): we will allow
submissions until 11:59 PM Friday of next week.

• If you missed your lab session, do the LEX as soon as you can on your own
time: post questions and requests for assistance in Piazza.

• Remember to not only submit your code, but also submit the form: 57 students
submitted code to AutoLab, but only 52 students submitted the form.

R E M I N D E R S

• Syllabus: posted on website

• Academic Integrity

• Team formation - make sure to form teams and give
composition in a private Piazza message.

• PRE will be posted once teams are formed.

• If necessary I will step in and assign students to teams.

C O M P I L E R

• On cerf use /usr/bin/gcc compiler (this is 11.4.0, and
should be your default)

• use -std=c11 (you can use other options too)

• test on cerf.cse.buffalo.edu (that’s our reference
system)

http://cerf.cse.buffalo.edu

S TAT I C V S D Y N A M I C
P R O G R A M A N A LY S I S

• static analysis - done on program without executing it

• dynamic analysis - done on program by executing it

T H E C O M P I L E R :
A S TAT I C A N A LY S I S T O O L

• We will explore what a compiler can and can’t tell us
about our code.

C O M P I L I N G A N D R U N N I N G C O D E

Textbook, page 6

C O M P I L I N G A N D R U N N I N G C O D E

Textbook, page 6

STATIC

DYNAMIC

T E X T, P G 8

T O P H AT (P R A C T I C E) Q U E S T I O N S

1 . U N D E R S TA N D T H E R E Q U I R E M E N T S

• Is it a bug or a misunderstanding of expected
behavior?

• Requirements will tell you.

2 . M A K E I T FA I L

• Write test cases to isolate bug and make it
reproducible.

• This will increase confidence that bug is fixed later.

• These tests will be added to the suite of regression
tests (“does today’s code pass yesterday’s tests?”)

3 . S I M P L I F Y T H E T E S T C A S E

• Ensure there is nothing extraneous in the test case.

• Keep it simple! Whittle it down until you get at the
essence of the failure.

4 . R E A D T H E R I G H T E R R O R M E S S A G E

• “Everything that happened after the first thing went
wrong should be eyed with suspicion. The first
problem may have left the program in a corrupt state.”
[p. 9]

5 . C H E C K T H E P L U G

• Don’t overlook the obvious - things like permissions,
file system status, available memory.

• “Think of ten common mistakes, and ensure nobody
made them.” [p. 9]

6 . S E PA R AT E FA C T F R O M F I C T I O N

• “Don’t assume!”

• Can you prove what you believe to be true?

7 . D I V I D E A N D C O N Q U E R

• Beware bugs caused by interactions amongst
components.

• Develop a list of suspects (source code, compiler,
environment, libraries, machine, etc)

• Each component alone may work correctly, but in
combination bad things happen

• Can be especially tricky with multithreaded programs

8 . M AT C H T H E T O O L T O T H E B U G

• If all you have is a hammer … you’ll end up with a very
sore thumb.

• Build a solid toolkit to give you choices.

• Use multiple tools/approaches (e.g. testing and
debugging work better together than either alone)

9 . O N E C H A N G E AT A T I M E

• Be methodical. If you make multiple changes at one
you can't tease apart which change had which effect.

• With your list of suspects, document what you predict
the outcome of a change will be.

• Document the changes you make, and the results.

• Did results match predictions?

1 0 . K E E P A N A U D I T T R A I L

• Make sure you can revert your code: use a code
repository! This lets you back out changes that were
not productive.

1 1 . G E T A F R E S H V I E W

• Ask for someone else to have a look — but not before
having done steps 1 - 10!

• Even just explaining the situation can help you better
understand what is happening.

1 2 . I F Y O U D I D N ’ T F I X I T, I T A I N ’ T
F I X E D

• Intermittent bugs will recur.

• If you make a change to the code and the symptom
goes away, did you really fix it? You must convince
yourself that the fix you applied really did solve the
problem!

1 3 . C O V E R Y O U R B U G F I X W I T H A
R E G R E S S I O N T E S T

• Make sure the bug doesn’t come back! Just because
it worked yesterday doesn't mean it still works today.
This is especially important in team environments
where you are not the only person touching the code.

E S S E N T I A L T O O L S

• compiler (e.g gcc)

• debugger (e.g. gbd)

• memory checker (e.g. memcheck)

• runtime profiler (e.g. gprof)

• automated testing framework (e.g. criterion or cunit)

• build tool (e.g. make)

• code repository (e.g. git)

• organization/collaboration tool (e.g. Trello or ZenHub)

• pad of paper / whiteboard

