
C S E 3 0 6
S O F T W A R E Q U A L I T Y I N P R A C T I C E

Dr. Carl Alphonce
alphonce@buffalo.edu
343 Davis Hall

www.cse.buffalo.edu/faculty/alphonce/FA24/CSE306

L AT E J O I N E R S

• Today is the last day for Add/Drop

• TopHat and AutoLab rosters will reflect add/drop changes
as of last night

• If you missed your lab session, do the LEX as soon as you
can on your own time: post questions and requests for
assistance in Piazza.

• We will NOT be strict on the deadlines for LEX01, LEX02,
and LEX03 (to accommodate students registering through
end of add/drop)

A N N O U N C E M E N T S

• Team formation will be finalized by tomorrow.

• if you wish to pick your teammates form your team before
5:00 PM today

• after 5:00 PM today I will assign remaining students to teams

• PRE (the first team project) will be posted on the course
website as soon as team assignments are completed.

• Every team will have a Piazza group useful for intra-team
communication, necessary for team-staff communication.

T E X T, P G 8

C L A S S I F I C AT I O N O F B U G S

• Common bugs (source code, predictable)

• Sporadic bugs (intermittent)

• Heisenbugs (averse to observation)

• race conditions

• memory access violations

• (programmer) optimizations

• Multiple bugs - several must be fixed before program behavior
changes - consider violating rule #9 "one change at a time"

W H Y H E I S E N B U G S ?
T H E U N C E R TA I N T Y P R I N C I P L E . . .

…the uncertainty principle, also known as Heisenberg's
uncertainty principle, is any of a variety of mathematical
inequalities[1] asserting a fundamental limit to the
precision with which certain pairs of physical properties
of a particle, known as complementary variables, such as
position x and momentum p, can be known.

https://en.wikipedia.org/wiki/Uncertainty_principle

https://en.wikipedia.org/wiki/Uncertainty_principle

O B S E R V E R E F F E C T

…the term observer effect refers to changes that the act
of observation will make on a phenomenon being
observed. This is often the result of instruments that, by
necessity, alter the state of what they measure in some
manner.

https://en.wikipedia.org/wiki/Observer_effect_(physics)

D E B U G G I N G T O O L S

• instrument code during compilation

• instrumented code may behave differently than
uninstrumented code

• in other words: the act of using a debugger may mask
a bug, causing its symptoms to disappear, only to
reappear when run without instrumentation

M E M O R Y
O R G A N I Z AT I O N

M E M O R Y O R G A N I Z AT I O N

STATIC

DYNAMIC

Each process (a running program)
has a chunk of memory at its
disposal.

This memory is divided into "static"
memory (allocated/structured before
execution begins) and "dynamic"
memory (allocated while the
program executes.

TEXT: program

DATA

M E M O R Y O R G A N I Z AT I O N

The static segment is divided into a
TEXT segment (holding the machine
language instructions of the
program), a DATA segment (for
initialized variables), and a BSS
segment (for uninitialized but
implicitly zero-assigned values).

STATIC

DYNAMIC

BSS

M E M O R Y O R G A N I Z AT I O N

HEAP

The dynamic segment is divided into
STACK and a HEAP areas.

The HEAP is generally located
adjacent to the STATIC segment,
and grows "up" (to higher memory
addresses).

TEXT: program

DATA STATIC

DYNAMIC

BSS

M E M O R Y O R G A N I Z AT I O N

free memory

The STACK is generally located at
the far end of memory and grows
"down" (to lower memory
addresses).

The area between the HEAP and the
STACK represents available (free)
memory in the processes' virtual
memory.

It the HEAP and STACK collide we
have an out-of-memory error.

HEAP

TEXT: program

DATA STATIC

DYNAMIC

BSS

M E M O R Y O R G A N I Z AT I O N

STACK

M E M O R Y O R G A N I Z AT I O N

The STACK holds invocation records
(also called stack frames).

An invocation record is created
whenever a function is called. It has
space for the function's parameters,
local variables, any return value, as
well as bookkeeping information
related to the call itself (e.g. where
to return to).

free memory

HEAP

TEXT: program

DATA STATIC

DYNAMIC

BSS

STACK

M E M O R Y O R G A N I Z AT I O N

main

Consider this code:

void g(void) { … }

void f(void) { … g(); … }

int main(void) { … f(); … }

The invocation record for main is
pushed on the stack as soon as
execution begins.

main's record is the current/active
one.

free memory

HEAP

TEXT: program

DATA STATIC

DYNAMIC

BSS

M E M O R Y O R G A N I Z AT I O N

Consider this code:

void g(void) { … }

void f(void) { … g(); … }

int main(void) { … f(); … }

When f() is called, an invocation
record for f is pushed to the top of
the stack.

f's record is the current/active one.

f

main

free memory

HEAP

TEXT: program

DATA STATIC

DYNAMIC

BSS

M E M O R Y O R G A N I Z AT I O N

Consider this code:

void g(void) { … }

void f(void) { … g(); … }

int main(void) { … f(); … }

When g() is called, an invocation
record for g is pushed to the top of
the stack.

g's record is the current/active one.

f

main

free memory

HEAP

TEXT: program

DATA STATIC

DYNAMIC

BSS

g

Consider this code:

void g(void) { … }

void f(void) { … g(); … }

int main(void) { … f(); … }

When g() returns its invocation
record is removed from the stack,
and f's invocation record becomes
the current/active one.

M E M O R Y O R G A N I Z AT I O N

f

main

free memory

HEAP

TEXT: program

DATA STATIC

DYNAMIC

BSS

Consider this code:

void g(void) { … }

void f(void) { … g(); … }

int main(void) { … f(); … }

When f() returns its invocation record
is removed from the stack, and
main's invocation record becomes
the current/active one.

M E M O R Y O R G A N I Z AT I O N

main

free memory

HEAP

TEXT: program

DATA STATIC

DYNAMIC

BSS

M E M O R Y O R G A N I Z AT I O N

The HEAP is used for dynamic
allocation of non-local data.

In Java allocation is done using
'new', as in

 px = new Foo();

Java's garbage collector frees heap-
allocated memory when it is no
longer in use.

f

main

free memory

HEAP

TEXT: program

DATA STATIC

DYNAMIC

BSS

g

addr *px

px addr

Java
, Sca

la

new

M E M O R Y O R G A N I Z AT I O N

The HEAP is used for dynamic
allocation of non-local data.

In Java allocation is done using
'new', as in

 px = new Foo();

Java's garbage collector frees heap-
allocated memory when it is no
longer in use.

f

main

free memory

HEAP

TEXT: program

DATA STATIC

DYNAMIC

BSS

g

Java
, Sca

la

new

addr *px

px addr

C
mallo

c

free

M E M O R Y O R G A N I Z AT I O N

In either case the (local) variable px
holds the address of the chunk of
memory, allocated on the heap,
which holds some data.

f

main

free memory

HEAP

TEXT: program

DATA STATIC

DYNAMIC

BSS

g

Java
, Sca

la

new

addr *px

px addr

C
mallo

c

free

M E M O R Y O R G A N I Z AT I O N

int main() {
 int x = 0;
 .
 .
 .
 return 0;
}

A local variable, like x in the code
shown, has memory for its value
set aside in the function's
invocation record.

The name of the variable, x in this
case, does not exist at runtime.

M E M O R Y O R G A N I Z AT I O N

int main() {
 int x = 0;
 .
 .
 .
 return 0;
}

invocation
record

SP

offset

memory for value of x

Any read from x or write to x is
translated into a memory access
at some offset from the current
Stack Pointer (SP). SP refers to a
known point within an invocation
record.

C O M P I L E R D O C U M E N TAT I O N

https://gcc.gnu.org/onlinedocs/9.4.0/

https://gcc.gnu.org/onlinedocs/gcc-9.4.0/gcc/Standards.html#C-
Language

http://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html

http://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#c

https://gcc.gnu.org/onlinedocs/9.47.2.0/
https://gcc.gnu.org/onlinedocs/gcc-9.4.0/gcc/Standards.html#C-Language
https://gcc.gnu.org/onlinedocs/gcc-9.4.0/gcc/Standards.html#C-Language
http://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html
http://releases.llvm.org/10.0.0/tools/clang/docs/UsersManual.html#c

C O M M O N O P T I O N S

-std

-o

-g

-c

-Wall

-L

-I

set language standard

set output file name

include debugging information in object file

compile/assemble do not link

report "all" warnings

library path

include path

A C T I V I T Y

#include <stdio.h>
#include <stdlib.h>

int main(void) {
int x = 0;
while (x < 10) {

printf("x has value %d\n",x);
x = x + 1;

}
exit(EXIT_SUCCESS);

}

Inspect this program and
describe as best you can
what this program will do
when it runs.

Also discuss where in
memory space for
variable x will be
allocated.

A C T I V I T Y

• Visit the course website:
https://cse.buffalo.edu/faculty/alphonce/FA24/
CSE306/

• Click on the "In-class activity" button for today.

• Answer the question on the "What does it do?" page.

https://cse.buffalo.edu/faculty/alphonce/FA24/CSE306/
https://cse.buffalo.edu/faculty/alphonce/FA24/CSE306/

A C T I V I T Y

It prints the values 0
through 9 in this format:

x has value 0
x has value 1
x has value 2
x has value 3
x has value 4
x has value 5
x has value 6
x has value 7
x has value 8
x has value 9

Memory for x will
allocated in main's
invocation record.

#include <stdio.h>
#include <stdlib.h>

int main(void) {
int x = 0;
while (x < 10) {

printf("x has value %d\n",x);
x = x + 1;

}
exit(EXIT_SUCCESS);

}

A C T I V I T Y

#include <stdio.h>
#include <stdlib.h>

int main(void) {
int x = 0;
while (x < 10) {

printf("x has value %d\n",x);
x = x + 1;

}
exit(EXIT_SUCCESS);

}

It prints the values 0
through 9 in this format:

x has value 0
x has value 1
x has value 2
x has value 3
x has value 4
x has value 5
x has value 6
x has value 7
x has value 8
x has value 9

Memory for x will
allocated in main's
invocation record.

In reality the value of x may exist
just in a register at runtime, but for
our purposes right now we don't
need to be concerned about that.

A C T I V I T Y

• Answer the question on the "Rewrite" page.

A C T I V I T Y

It prints the values 0 through 9 in
this format:

x has value 0
x has value 1
x has value 2
x has value 3
x has value 4
x has value 5
x has value 6
x has value 7
x has value 8
x has value 9

Memory for x will allocated in the
invocation record of main.

#include <stdio.h>
#include <stdlib.h>

int main(void) {
int x = 0;
while (x < 10) {

printf("x has value %d\n",x);
x = x + 1;

}
exit(EXIT_SUCCESS);

}

Transform this program
so that the value being
printed is stored on the
heap rather than on the
stack.

First write out your
answer on paper
WITHOUT compiling the
code (compiling at this
stage defeats the
purpose of the exercise).

This code may have
errors in it - that's OK!

• Selected groups - write code on board

• (I will capture what's on boards and insert into slides)

