Qu&tiﬁv A Practice

;: Sonﬂwm‘@.

Dr. Carl Ai.pkom':@.
alphonce@buffalo.edu
34-3 Davis Hall

Wr&FP&MS up our
intro to qik

(the chsibiﬁ. states of a file)

Possible states of a file
(gik skl s

commit

add

unkracked

commil preserves contents
(accidental removals can be recovered from)

commik

add

unkracked

create a file

Suppose we create a file in the
workspace.,

How do we qeb it into the local
repas&&ory?

add bto index
(staging area)

o qit add <filename>

commit to
local repo

o SE;E commit —m "messaqge”

osit

<

Fms!« to
remote repo

o git F?u,sh

osit

<

Inkroduction ko
testing

P XN e

R
= 0

=
N

Recall the rules

Understand the requirements
Make ik fail
Simplify the test case

. Read the right error message

Checie the pi.u,g

Separate fact from fiction
Divide and conquer

Match the tool to the buq
One change at a btime

. Keep an audit trail

. Greb a fresh view

. If you didnt fix ik, ik aint fixed
. Cover your bug fix with a regression test

P XN N e

R
= 0

=
b N

Recall the rules

Understand the requirements
Malkee it fail
‘Sim[owﬁj the test case

. Read the right error message

Checle the pi.u,g

Separate fact from fiction
Divide and conquer

Mabch the tool to the bu,g
One change at a btime

. Keep an audit trail

. Greb a fresh view

. If you didnt fix ik, ik aint fixed
. Cover your bug fix with a reqression test

Unit testing frameworks

o uniform way of expressing tests
@ mahaqe tests through suites

o automate testing process

Production code

Testk code

Test code is separate from production code, but calls
production code to verify its functionality,

Unit Testing
frameworks

WEE PSI’//@M«QLR“EFQ&LO\.Ora/maﬁ‘i/ Lis Emanfmuvx&m&as&thmﬁameworws

CUnit - C
Criterion - C/C++
JUunik - Java
Mocha - 3avaS€r£p%
Fj&@.s% - ‘Pjﬁkom
SeUnik - Scala
Vunit - Verilog/VHDL
among many, many others

We'll use Criterion

WEE Fvs://arE;%ermm..read&hecimts.1E;o

k&%Fs://gE,Ehub..ﬁom/$ma&ga/¢ri%ermm

https://criterion.readthedocs.io
https://github.com/Snaipe/Criterion

OV, : : . . .
g%aff.(Is organized like a conventional unit testing framework:
(.

Test Registry

Test '11' ... Test '1M' Test 'N1' ... Test 'NM'

hitp: //cunit.sourceforgemnet/doc/introduction hitml

http://cunit.sourceforge.net/doc/introduction.html

Tests are automatically registered when
declared.,

Implements a xUnit framework structure.

A default entry point is provided, no need to
declare a main unless you wank to do spec:i;al.
handling.

 Test are isolated it their own process, crashes
and signals can be r@.porﬁad and tested,

From: https://github.com/Snaipe/Criterion

Assertions
(the mosk common ones)

h&&gsz//cri&er&onmead&hado&s.,Lo/eu/mas&er/asser&_,aid.,k&mi

k&&?s://criEarioh.read&kedoas.Lo/ev\/masEer/ass&r&.h&mt

https://criterion.readthedocs.io/en/master/assert_old.html
https://criterion.readthedocs.io/en/master/assert.html

Exercise

Write tests for a function named
eval which bakes two ink values (x
and fj> and rebturins their sum as an
LAk,

code from lecture

code

"A‘\ “, h kB 4 : .

it T By
protot

e
‘v & .
» <
', o p R,
G S
¥ 3

(:I‘ '
K {

5 L & } %, Bty 4

i | 8 \ .

} S o

int eval(int, int);

code.c
#include "code.h"

int eval(int a,int D) %
return 0;
s

code from lecture

Two tests fuhctions, Each is self-

tests.c . | _
cohtained (parameters, ho value returhed)
#include <criterion/criterion.h> L and dehote the thputs
#include "code.h" . - "is the expected correct value.

actual o eelyifiiddcy 51»‘3 calling the tunction

Test(sum, test 0) { under best,

i BT e
inty = 2;

: The - 1 " call checles Fhe resull of
int expected = 4; he © 0 0 call checks the result of
int actual = eval(x,y); the test

cr_assert_eq(actual, expected, £ |
"I expected eval(%d,%d) to be %d, but it was %d.\n",
X, Yy, expected, actual); o S

¥

Test(sum, test 1) {

TRt X = e

TNty g

1nt expected =1y

int actual = eval(x,y);

cr_assert_eqg(actual, expected,
"I expected eval(%d,%d) to be %d, but it was %d.\n",
X, Yy, expected, actual);

Running the tests

turing:~/CSE306/code/UnitTesting> ./tests
;————; tests.c:9: Assertion Failed

———— I expected eval(2,2) to be 4, but it was 0.

;————; tests.c:19: Assertion Failed

[———— I expected eval(-2,3) to be 1, but it was 0.
[FAIL] sum::test 0: (0.00s)

[FAIL] sum::test 1: (0.00s)

(====] Synthesis: Tested: 2 | Passing: 0 | Failing: 2 |
Crashing: 0

turing:~/CSE306/code/UnitTesting>

code from lecture

#include <criterion/criterion.h>
#include '"code.h"

Test(sum, test 0) {

1Nt e =2

int. =2

int expected = 4;

int actual = eval(x,y);

cr_assert_eq(actual, expected,
"I expected eval(%d,%d) to be %d, but it was %d.\n",
X, Y, expected, actual);

¥

Test(sum, test 1) {
IRt X =i
int y = 3;

int expected =1,

int actual = eval(x,y);

cr_assert_eq(actual, expected,
"I expected eval(%d,%d) to be %d, but it was %d.\n",
X, Yy, expected, actual);

