
CSE306 Software
Quality in Practice

Dr. Carl Alphonce
alphonce@buffalo.edu

343 Davis Hall

Wrapping up our
intro to git

(the possible states of a file)

Possible states of a file
(git status -v)

staged

unmodified

modified

untracked

edit commit

add

add

commit preserves contents
(accidental removals can be recovered from)

staged

unmodified

modified

untracked

edit commit

add

add

create a file

Suppose we create a file in the
workspace.

How do we get it into the local
repository?

add to index
(staging area)

git add <filename>

index
staging

remote
repository

local
repository

workspacestash

git add

commit to
local repo

git commit -m "message"

index
staging

remote
repository

local
repository

workspacestash

git commit

push to
remote repo

git push

index
staging

remote
repository

local
repository

workspacestash

git push

Introduction to
testing

Recall the rules
1. Understand the requirements
2. Make it fail
3. Simplify the test case
4. Read the right error message
5. Check the plug
6. Separate fact from fiction
7. Divide and conquer
8. Match the tool to the bug
9. One change at a time
10. Keep an audit trail
11. Get a fresh view
12. If you didn’t fix it, it ain’t fixed
13. Cover your bug fix with a regression test

Recall the rules
1. Understand the requirements
2. Make it fail
3. Simplify the test case
4. Read the right error message
5. Check the plug
6. Separate fact from fiction
7. Divide and conquer
8. Match the tool to the bug
9. One change at a time
10. Keep an audit trail
11. Get a fresh view
12. If you didn’t fix it, it ain’t fixed
13. Cover your bug fix with a regression test

Unit testing frameworks

uniform way of expressing tests

manage tests through suites

automate testing process

Production code

Test code

Test code is separate from production code, but calls
production code to verify its functionality.

Unit Testing
frameworks

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks

CUnit - C
Criterion - C/C++

JUnit - Java
Mocha - JavaScript
pytest - Python
ScUnit - Scala

VUnit - Verilog/VHDL
among many, many others

We'll use Criterion

https://criterion.readthedocs.io

https://github.com/Snaipe/Criterion

https://criterion.readthedocs.io
https://github.com/Snaipe/Criterion

http://cunit.sourceforge.net/doc/introduction.html

Cri
ter

ion

http://cunit.sourceforge.net/doc/introduction.html

Tests are automatically registered when
declared.

Implements a xUnit framework structure.

A default entry point is provided, no need to
declare a main unless you want to do special
handling.

Test are isolated in their own process, crashes
and signals can be reported and tested.

From: https://github.com/Snaipe/Criterion

https://github.com/Snaipe/Criterion#readme

Assertions
(the most common ones)

https://criterion.readthedocs.io/en/master/assert_old.html

https://criterion.readthedocs.io/en/master/assert.html

https://criterion.readthedocs.io/en/master/assert_old.html
https://criterion.readthedocs.io/en/master/assert.html

Exercise

Write tests for a function named
eval which takes two int values (x

and y) and returns their sum as an
int.

code from lecture

code.h

int eval(int,int);

code.c

#include "code.h"

int eval(int a,int b) {
 return 0;
}

A function
prototype (i.e. a

function
declaration)

A stubbed out
implementation
(i.e. a function

definition)

code from lecture

tests.c

#include <criterion/criterion.h>
#include "code.h"

Test(sum, test_0) {
 int x = 2;
 int y = 2;
 int expected = 4;
 int actual = eval(x,y);
 cr_assert_eq(actual, expected,
 "I expected eval(%d,%d) to be %d, but it was %d.\n",
 x, y, expected, actual);
}

Test(sum, test_1) {
 int x = -2;
 int y = 3;
 int expected = 1;
 int actual = eval(x,y);
 cr_assert_eq(actual, expected,
 "I expected eval(%d,%d) to be %d, but it was %d.\n",
 x, y, expected, actual);
}

Two tests functions. Each is self-
contained (parameters, no value returned).

x and y denote the inputs.
expected is the expected correct value.

actual is computed by calling the function
under test.

The cr_assert_eq call checks the result of
the test.

Running the tests

turing:~/CSE306/code/UnitTesting> ./tests
[----] tests.c:9: Assertion Failed
[----]
[----] I expected eval(2,2) to be 4, but it was 0.
[----]
[----] tests.c:19: Assertion Failed
[----]
[----] I expected eval(-2,3) to be 1, but it was 0.
[----]
[FAIL] sum::test_0: (0.00s)
[FAIL] sum::test_1: (0.00s)
[====] Synthesis: Tested: 2 | Passing: 0 | Failing: 2 |
Crashing: 0
turing:~/CSE306/code/UnitTesting>

code from lecture
#include <criterion/criterion.h>
#include "code.h"

Test(sum, test_0) {
 int x = 2;
 int y = 2;
 int expected = 4;
 int actual = eval(x,y);
 cr_assert_eq(actual, expected,
 "I expected eval(%d,%d) to be %d, but it was %d.\n",
 x, y, expected, actual);
}

Test(sum, test_1) {
 int x = -2;
 int y = 3;
 int expected = 1;
 int actual = eval(x,y);
 cr_assert_eq(actual, expected,
 "I expected eval(%d,%d) to be %d, but it was %d.\n",
 x, y, expected, actual);
}

