
CSE306 Software
Quality in Practice

Dr. Carl Alphonce
alphonce@buffalo.edu

343 Davis Hall

PRE

How did it go?

What were major challenges for your
team?

PRE
Document baseline approach to SW
development in a team environment

What are we looking for?
Documentation of process.

Some teams did not collaborate/
communicate well.
Something to work on: how can you (as
an individual & as a team) encourage/
ensure collaboration and communication?

Learning outcomes of course
(I) Employ static and dynamic analysis tools to detect faults in a
given piece of software.

(II) Employ profiling tools to identify performance issues (both
time and memory) in a given piece of software.

(III) Employ testing frameworks to write tests that fail in the
presence of software faults, and pass otherwise

(IV) Employ a structured, methodical approach to detecting, testing,
identifying and correcting software faults.

(V) Work productively as a member of a software development team.

Think broadly

Think broadly
build to LPR

Think broadly
build to LPR

apply in other courses

Think broadly
build to LPR

apply in other courses

showcase to potential employers

EXP01

Released this past Sunday (@123)
Team-based: same teams as for PRE
Clone repo via GitHub as usual so course staff
can view: 3 (of 16) teams have accepted so far
Learning goals:

show you can apply process
show you can use tools effectively
show you can engage in teamwork
- communication and collaboration are key
- More to come between EXP01 and EXP02

EXP01

Demo

"Check the plug"

LEX08

.h and .c

Question for class

When stepping through code with debugger, why are
declarations skipped?

int foo() {
 int x;
 double y;
 y = f(x) * 3; // why does debugger skip to here?
 …
}

Answer

Declarations are handled by compiler at
compile time. They have no run-time
analogue.

make
What is it good for?

"You can use [make] to describe any
task where some files must be updated
automatically from others whenever
the others change."

[https://www.gnu.org/software/make/manual/make.pdf, page 1]

https://www.gnu.org/software/make/manual/make.pdf

make and makefiles

makefile contains rules that
describe update dependencies

rules

target : prerequisites
recipe

rules

target : prerequisites
recipe

Must be a tab!

target
A target is usually the name of a
file that needs to be generated/
updated during the 'make' process

The rule will be used by 'make' when
the target is out-of-date, and so
should say how to update the target

target
A target is usually the name of a
file that needs to be generated/
updated during the 'make' process

The rule will be used by 'make' when
the target is out-of-date, and so
should say how to update the target

"Bear in mind that make does
not know anything about how the recipes work. It

is up to you to supply recipes that will update the target
file properly. All make does is execute the recipe you

have specified when the target file needs to be
updated." [p. 5]

target

primOpt.o: primOpt.c primOpt.h
 gcc -c —Wall primOpt.c

target

A target can be "phony" - an
arbitrary label for an action given
by the rest of the rule

target

clean:
 rm -f primOpt.o main

"…the clean target will not work
properly if a file named clean is ever created

in this directory. Since it has no prerequisites, clean
would always be considered up to date and its recipe would

not be executed. To avoid this problem you can explicitly
declare the target to be phony by making it a

prerequisite of the special target .PHONY" [p. 29]

target
.PHONY: clean
clean:
 rm -f primOpt.o main

