
CSE306 Software
Quality in Practice

Dr. Carl Alphonce
alphonce@buffalo.edu

343 Davis Hall

GNU make
text and examples from gmake documentation

https://www.gnu.org/software/make/manual/make.html

So far:
- rules, targets, prerequisites, recipes
- explicit and implicit rules
- makefile naming
- phony targets
- variables
- comments
- regular and order-only prerequisites

Review

https://www.gnu.org/software/make/manual/make.html

4.4 Wildcards
https://www.gnu.org/software/make/manual/make.html#Wildcards

The wildcard characters in make are ‘*’, ‘?’ and ‘[…]’
Wildcard expansion is performed by make automatically in targets and in
prerequisites.
In recipes, the shell is responsible for wildcard expansion.
In other contexts, wildcard expansion happens only if you request it
explicitly with the wildcard function.

Suppose you would like to say that the executable file foo is made from
all the object files in the directory, and you write this:

objects = *.o

foo : $(objects)
 cc -o foo $(CFLAGS) $(objects)

The value of objects is the actual string ‘*.o’. Wildcard expansion happens
in the rule for foo, so that each existing ‘.o’ file becomes a prerequisite of
foo and will be recompiled if necessary.

But what if you delete all the ‘.o’ files? When a wildcard matches no files,
it is left as it is, so then foo will depend on the oddly-named file *.o.
Since no such file is likely to exist, make will give you an error saying it
cannot figure out how to make *.o.

https://www.gnu.org/software/make/manual/make.html#Wildcards

4.4.3 The Function wildcard
Wildcard expansion happens automatically in rules. But wildcard expansion does not normally take place when a variable is set, or
inside the arguments of a function. If you want to do wildcard expansion in such places, you need to use the wildcard function, like
this:

$(wildcard pattern…)

This string, used anywhere in a makefile, is replaced by a space-separated list of names of existing files that match one of the given
file name patterns. If no existing file name matches a pattern, then that pattern is omitted from the output of the wildcard function.
Note that this is different from how unmatched wildcards behave in rules, where they are used verbatim rather than ignored (see
Wildcard Pitfall).

One use of the wildcard function is to get a list of all the C source files in a directory, like this:

$(wildcard *.c)

We can change the list of C source files into a list of object files by replacing the ‘.c’ suffix with ‘.o’ in the result, like this:

$(patsubst %.c,%.o,$(wildcard *.c))

(Here we have used another function, patsubst. See Functions for String Substitution and Analysis.)

Thus, a makefile to compile all C source files in the directory and then link them together could be written as follows:

objects := $(patsubst %.c,%.o,$(wildcard *.c))

foo : $(objects)
 cc -o foo $(objects)

(This takes advantage of the implicit rule for compiling C programs, so there is no need to write explicit rules for compiling the files.
See The Two Flavors of Variables, for an explanation of ‘:=’, which is a variant of ‘=’.)

https://www.gnu.org/software/make/manual/make.html#Wildcard-Function

4.5.1 VPATH
https://www.gnu.org/software/make/manual/make.html#Directory-Search

The value of the make variable VPATH
specifies a list of directories that make
should search. Most often, the
directories are expected to contain
prerequisite files that are not in the
current directory; however, make uses
VPATH as a search list for both
prerequisites and targets of rules.
Example: VPATH = src:../headers

Similar to the VPATH variable, but more selective, is
the vpath directive (note lower case), which allows
you to specify a search path for a particular class
of file names: those that match a particular pattern.
Thus you can supply certain search directories for
one class of file names and other directories (or
none) for other file names.
A vpath pattern is a string containing a ‘%’
character. The string must match the file name of a
prerequisite that is being searched for, the ‘%’
character matching any sequence of zero or more
characters (as in pattern rules; see Defining and
Redefining Pattern Rules). For example, %.h matches
files that end in .h.
Example: vpath %.h ../headers

4.5.2 VPATH
https://www.gnu.org/software/make/manual/make.html#Directory-Search

4.14 Generating Prerequisites Automatically
https://www.gnu.org/software/make/manual/make.html#Automatic-Prerequisites

To avoid this hassle, most modern C compilers can
write these rules for you, by looking at the #include
lines in the source files. Usually this is done with the
‘-M’ option to the compiler. For example, the
command:

cc -M main.c
generates the output:

main.o : main.c defs.h
Thus you no longer have to write all those rules
yourself. The compiler will do it for you.

Use -MM instead of -M to "[omit]
prerequisites on system header files."

Section 4.14 goes into some detail on how to set up rules to
automatically create the dependencies. That is more involved than

I expect you to learn in this course. Instead, run
gcc -MM file.c

manually to get the prerequisites right; insert them directly into
the makefile.

https://www.gnu.org/software/make/manual/make.html#Automatic-Prerequisites

5.1 Recipe Syntax
https://www.gnu.org/software/make/manual/make.html#Recipe-Syntax

Two kinds of syntax used in a
makefile:
- Recipes use shell syntax
- Rest of makefile uses make syntax

This has important implications for
how variables are interpreted

Example
https://www.gnu.org/software/make/manual/make.html#Variables-in-Recipes

LIST = one two three
all:
 for i in $(LIST); do \
 echo $$i; \
 done

Rule in makefile

What the shell sees

for i in one two three; do \
 echo $i; \
done

Example
https://www.gnu.org/software/make/manual/make.html#Variables-in-Recipes

one
two
three

Example
https://www.gnu.org/software/make/manual/make.html#Variables-in-Recipes

The output produced

Automatic variables
https://www.gnu.org/software/make/manual/make.html#Automatic-Variables

$@ The file name of the target of the rule.
$% The target member name, when the target is an
 archive member.
$< The name of the first prerequisite.
$? The names of all the prerequisites that are
 newer than the target, with spaces between them.
$^ The names of all the prerequisites, with spaces
 between them.
$+ This is like ‘$^’, but prerequisites listed more
 than once are duplicated in the order they were
 listed in the makefile.
$| The names of all the order-only prerequisites,
 with spaces between them.
$* The stem with which an implicit rule matches
 (see How Patterns Match).

Lecture question

‘$(@D)’
The directory part of the file name of the target, with the trailing slash removed. If the value of ‘$@’
is dir/foo.o then ‘$(@D)’ is dir. This value is . if ‘$@’ does not contain a slash.
‘$(@F)’
The file-within-directory part of the file name of the target. If the value of ‘$@’ is dir/foo.o then ‘$
(@F)’ is foo.o. ‘$(@F)’ is equivalent to ‘$(notdir $@)’.

‘$(*D)’
‘$(*F)’
The directory part and the file-within-directory part of the stem; dir and foo in this example.

‘$(%D)’
‘$(%F)’
The directory part and the file-within-directory part of the target archive member name. This makes sense
only for archive member targets of the form archive(member) and is useful only when member may contain a
directory name. (See Archive Members as Targets.)

‘$(<D)’
‘$(<F)’
The directory part and the file-within-directory part of the first prerequisite.

‘$(^D)’
‘$(^F)’
Lists of the directory parts and the file-within-directory parts of all prerequisites.

‘$(+D)’
‘$(+F)’
Lists of the directory parts and the file-within-directory parts of all prerequisites, including multiple
instances of duplicated prerequisites.

‘$(?D)’
‘$(?F)’
Lists of the directory parts and the file-within-directory parts of all prerequisites that are newer than
the target.

Automatic variables
https://www.gnu.org/software/make/manual/make.html#Automatic-Variables

5.3 Recipe execution

When it is time to execute recipes to
update a target, they are executed by
invoking a new sub-shell for each line
of the recipe, unless the .ONESHELL
special target is in effect

5.3 Recipe execution

Sometimes you would prefer that all the lines
in the recipe be passed to a single invocation of
the shell.

.ONESHELL:
SHELL = /usr/bin/perl
.SHELLFLAGS = -e
show :
 # Make sure "@" is not the first character on the first line
 @f = qw(a b c);
 print "@f\n";

What OS are you running on?
OS identification from

https://stackoverflow.com/questions/714100/os-detecting-makefile

uname -s

OS = $(shell uname -s)

ifeq ($(OS),Darwin)
 MSG = You are running macos
else ifeq ($(OS),Linux)
 MSG = You are running linux
else
 MSG = You are running something else
endif

CC BY-SA 3.0
Author: Jdthood

Source: en.wikipedia.org/
wiki/GNU_Build_System#/

media/File:Autoconf-
automake-process.svg

http://en.wikipedia.org/wiki/GNU_Build_System#/media/File:Autoconf-automake-process.svg
http://en.wikipedia.org/wiki/GNU_Build_System#/media/File:Autoconf-automake-process.svg
http://en.wikipedia.org/wiki/GNU_Build_System#/media/File:Autoconf-automake-process.svg
http://en.wikipedia.org/wiki/GNU_Build_System#/media/File:Autoconf-automake-process.svg

Review this lecture and last
before LEX 11

opaque vs transparent
testing

opaque testing
Can anyone describe what this is?

opaque testing

Testing done to probe the input/output behavior
of a system, without knowledge of the interior
structure.

TDD relies on opaque testing to capture
requirements of a software component before it
is implemented.

opaque testing
Code is treated as a closed box, one
which you cannot peek inside

input output

opaque testing
Tests are written without regard to
HOW code is written

input output

opaque testing
Tests are meant to capture the intended
behavior of the system (the requirements/
specifications): WHAT the code should do.

input output

opaque testing
In Test Driven Development (TDD) tests
are written before the code is, and so
qualifies as opaque testing.

input output

opaque testing
In TDD, think of tests written to
capture specifications as executable
specifications.

input output

transparent testing
Can anyone describe what this is?

transparent testing

Testing done to probe the input/output behavior
of a system, knowing knowledge of the interior
structure.

TDD relies on transparent testing to ensure that
all computation paths of a software component
implementation are covered by test cases.

transparent testing
Tests are written taking into
consideration HOW the code is written.

 if (x < y) {
 z = f(x,y);
 }
 else {
 z = g(x,y,z);
 }

input output

transparent testing
Use a code coverage tool to ensure
that tests exercise ALL possible
computation paths.

 if (x < y) {
 z = f(x,y);
 }
 else {
 z = g(x,y,z);
 }

input output

transparent testing
Use a code coverage tool to ensure
that tests exercise ALL possible
computation paths.

 if (x < y) {
 z = f(x,y);
 }
 else {
 z = g(x,y,z);
 }

input output

Code coverage
We will use gcov as our coverage tool.

Compile with,

-fprofile-arcs
-ftest-coverage
-lgcov

as in:
gcc $(CFLAGS) -fprofile-arcs -ftest-coverage
 -L /util/CUnit/lib
 -I /util/CUnit/include/CUnit/
 $(OBJECTS) tests.c -o tests
 -lcriterion -lgcov

-fprofile-arcs

Instrument arcs during compilation. For each
function of your program, GCC creates a
program flow graph, then finds a spanning tree
for the graph.

https://gcc.gnu.org/onlinedocs/gcc-2.95.2/
gcc_2.html#SEC9

https://gcc.gnu.org/onlinedocs/gcc-2.95.2/gcc_2.html#SEC9
https://gcc.gnu.org/onlinedocs/gcc-2.95.2/gcc_2.html#SEC9

-ftest-coverage

Create data files for the gcov code-coverage
utility (see section gcov: a GCC Test Coverage
Program).

https://gcc.gnu.org/onlinedocs/gcc-2.95.2/
gcc_2.html#SEC9

https://gcc.gnu.org/onlinedocs/gcc-2.95.2/gcc_2.html#SEC9
https://gcc.gnu.org/onlinedocs/gcc-2.95.2/gcc_2.html#SEC9

-llibrary
Search the library named library when linking.
It makes a difference where in the command you
write this option; the linker searches/processes
libraries and object files in the order they are
specified. Thus,

foo.o -lz bar.o
searches library `z' after file `foo.o' but before `bar.o'.
If `bar.o' refers to functions in `z', those functions
may not be loaded.
[…]
The directories searched include several standard
system directories plus any that you specify with `-L'.

https://gcc.gnu.org/onlinedocs/gcc-2.95.2/gcc_2.html#SEC13

https://gcc.gnu.org/onlinedocs/gcc-2.95.2/gcc_2.html#SEC13

using gcov to verify test coverage

compile test code with extra flags

this instruments code to gather coverage information

run tests

this runs your tests and allows the instrumentation to
collect coverage data that shows what parts of the
implementation were exercised by the tests

run gcov on the source file (e.g. source.c) whose coverage
you're interested in exploring

use 'man gcov' to see gcov command line options. Try -b.

Look at the file produced by gcov (e.g. source.c.gcov)

