
CSE306 Software
Quality in Practice

Dr. Carl Alphonce
alphonce@buffalo.edu

343 Davis Hall

opaque testing
Tests are written without regard to
HOW code is written

input output

opaque testing
Tests are meant to capture the intended
behavior of the system (the requirements/
specifications): WHAT the code should do.

input output

transparent testing
Tests are written taking into
consideration HOW the code is written.

 if (x < y) {
 z = f(x,y);
 }
 else {
 z = g(x,y,z);
 }

input output

transparent testing
Use a code coverage tool to ensure
that tests exercise ALL possible
computation paths.

 if (x < y) {
 z = f(x,y);
 }
 else {
 z = g(x,y,z);
 }

input output

transparent testing
Use a code coverage tool to ensure
that tests exercise ALL possible
computation paths.

 if (x < y) {
 z = f(x,y);
 }
 else {
 z = g(x,y,z);
 }

input output

Code coverage
We will use gcov as our coverage tool.

Compile with,

-fprofile-arcs
-ftest-coverage
-lgcov

as in:
gcc $(CFLAGS) -fprofile-arcs -ftest-coverage
 -L /util/criterion/lib/x86_64-linux-gnu
 -I /util/criterion/include
 $(OBJECTS) tests.c -o tests
 -lcriterion -lgcov

using gcov to verify test coverage

compile test code with extra flags

this instruments code to gather coverage information

run tests

this runs your tests and allows the instrumentation to
collect coverage data that shows what parts of the
implementation were exercised by the tests

run gcov on the source file (e.g. source.c) whose coverage
you're interested in exploring

use 'man gcov' to see gcov command line options. Try -b.

Look at the file produced by gcov (e.g. source.c.gcov)

Lecture question

Exercise:
https://tools.ietf.org/html/

rfc3986#section-3.1

(GH Classroom link on
course website)

https://tools.ietf.org/html/rfc3986#section-3.1
https://tools.ietf.org/html/rfc3986#section-3.1

