Phases of a compiler

Figure 1.6, page 5 of text
Example

$L = \{ 0, 1, 00, 11, 000, 111, 0000, 1111, \ldots \}$

$G = (\{ 0, 1 \}, \{ S, \text{ZeroList}, \text{OneList} \},$
\{ $S \rightarrow \text{ZeroList} \mid \text{OneList},$
\text{ZeroList} \rightarrow 0 \mid 0 \text{ZeroList},$
\text{OneList} \rightarrow 1 \mid 1 \text{OneList} \}$,
$S)$
Derivations from G

Derivation of 0 0 0 0
S → ZeroList
 → 0 ZeroList
 → 0 0 ZeroList
 → 0 0 0 ZeroList
 → 0 0 0 0

Derivation of 1 1 1
S → OneList
 → 1 OneList
 → 1 1 OneList
 → 1 1 1
Observations

- Every string of symbols in a derivation is a sentential form.
- A sentence is a sentential form that has only terminal symbols.
- A leftmost derivation is one in which the leftmost nonterminal in each sentential form is the one that is expanded.
- A derivation can be leftmost, rightmost, or neither.
```plaintext
Programming Language
Grammar Fragment

<program>  -->  <stmt-list>
<stmt-list>  -->  <stmt>  |  <stmt> ;  <stmt-list>
<stmt>  -->  <var>  =  <expr>
<var>  -->  a  |  b  |  c  |  d
<expr>  -->  <term>  +  <term>  |  <term>  -  <term>
<term>  -->  <var>  |  const

Notes:
<var> is defined in the grammar
const is not defined in the grammar
```
A leftmost derivation of

\[a = b + \text{const} \]

\[
\text{<program>} \Rightarrow \text{<stmt-list>}
\Rightarrow \text{<stmt>}
\Rightarrow \text{<var>} = \text{<expr>}
\Rightarrow a = \text{<expr>}
\Rightarrow a = \text{<term>} + \text{<term>}
\Rightarrow a = \text{<var>} + \text{<term>}
\Rightarrow a = b + \text{<term>}
\Rightarrow a = b + \text{const}
\]
Parse tree

<program>
 ├
 │
 └<stmt-list>
 └<stmt>
 └<var> = <expr>
 └a <term> + <term>
 └<var> const
 └b
Parse trees and compilation

- A compiler builds a parse tree for a program (or for different parts of a program).
- If the compiler cannot build a well-formed parse tree from a given input, it reports a compilation error.
- The parse tree serves as the basis for semantic interpretation/translation of the program.
Extended BNF

• Optional parts are placed in brackets []
 `<proc_call> -> ident [(<expr_list>)]`

• Alternative parts of RHSs are placed inside parentheses and separated via vertical bars
 `<term> -> <term> (+|-) const`

• Repetitions (0 or more) are placed inside braces
 `
 `<ident> -> letter {letter|digit}`
 `}`
Comparison of BNF and EBNF

- sample grammar fragment expressed in BNF

\[
<\text{expr}> \rightarrow <\text{expr} > + <\text{term}>
| <\text{expr}> - <\text{term}>
| <\text{term}>
\]

\[
<\text{term}> \rightarrow <\text{term} > * <\text{factor}>
| <\text{term} > / <\text{factor}>
| <\text{factor}>
\]

- same grammar fragment expressed in EBNF

\[
<\text{expr}> \rightarrow <\text{term} > \{(+ | -) <\text{term}>\}
<\text{term}> \rightarrow <\text{factor} > \{(* | /) <\text{factor}>\}
A grammar is ambiguous if and only if it generates a sentential form that has two or more distinct parse trees.

Operator precedence and operator associativity are two examples of ways in which a grammar can provide unambiguous interpretation.
Operator precedence ambiguity

The following grammar is ambiguous:

```plaintext
<expr>  ->  <expr>  <op>  <expr>  |  const
<op>    ->  -  |  /
```

The grammar treats the two operators, `-` and `/`, equivalently.
An ambiguous grammar for arithmetic expressions

\[
\begin{align*}
\text{<expr>} & \rightarrow \text{<expr>} \text{ <op>} \text{ <expr>} \mid \text{const} \\
\text{<op>} & \rightarrow / \mid -
\end{align*}
\]
Disambiguating the grammar

This grammar (fragment) is unambiguous:

<expr> -> <expr> - <term> | <term>
<term> -> <term> / const | const

The grammar treats the two operators, ‘-’ and ‘/’, differently.

In this grammar, ‘/’ has higher precedence than ‘-’.
Disambiguating the grammar

• If we use the parse tree to indicate precedence levels of the operators, we can remove the ambiguity.
• The following rules give / a higher precedence than -

\[
\begin{align*}
\text{<expr>} & \rightarrow \text{<expr>} - \text{<term>} \mid \text{<term>} \\
\text{<term>} & \rightarrow \text{<term>} / \text{const} \mid \text{const}
\end{align*}
\]
Sample grammars

https://docs.oracle.com/javase/specs/

http://blackbox.userweb.mwn.de/Pascal–EBNF.html

https://cs.wmich.edu/~gupta/teaching/cs4850/sumII06/The%20syntax%20of%20C%20in%20Backus–Naur%20form.htm
Derivation of $2 + 5 \times 3$
using **C** grammar
Recursion and parentheses

• To generate 2+3*4 or 3*4+2, the parse tree is built so that + is higher in the tree than *.
• To force an addition to be done prior to a multiplication we must use parentheses, as in (2+3)*4.
• Grammar captures this in the recursive case of an expression, as in the following grammar fragment:

 $\langle expr \rangle \rightarrow \langle expr \rangle \ + \ \langle term \rangle \ | \ \langle term \rangle$

 $\langle term \rangle \rightarrow \langle term \rangle \ * \ \langle factor \rangle \ | \ \langle factor \rangle$

 $\langle factor \rangle \rightarrow \langle variable \rangle \ | \ \langle constant \rangle \ | \ "(\" \ \langle expr \rangle \ "\)"$
6.2.2 Evaluation Order

The order of evaluation of subexpressions within an expression is undefined. In particular, you cannot assume that the expression is evaluated left to right. For example:

\[\text{int } x = f(2) + g(3); \quad \text{// undefined whether } f() \text{ or } g() \text{ is called first} \]

C++ Programming Language, 3rd edition.
Bjarne Stroustrup. (c) 1997. Page 122.
A compiler translates high level language statements into a much larger number of low-level statements, and then applies optimizations. The entire translation process, including optimizations, must preserve the semantics of the original high-level program.

By not specifying the order in which subexpressions are evaluated (left-to-right or right-to-left) a C++ compiler can potentially reorder the resulting low-level instructions to give a “better” result.
RL ⊆ CFL

Given a regular language L we can always construct a context free grammar G such that \(L = L(G) \).

For every regular language L there is an NFA \(M = (S, \Sigma, \delta, F, s_0) \) such that \(L = L(M) \).

Build \(G = (N, T, P, S_0) \) as follows:

- \(N = \{ N_s \mid s \in S \} \)
- \(T = \{ t \mid t \in \Sigma \} \)
- If \(\delta(i,a) = j \), then add \(N_i \rightarrow a N_j \) to \(P \)
- If \(i \in F \), then add \(N_i \rightarrow \varepsilon \) to \(P \)
- \(S_0 = N_{s_0} \)
\[(ab|b)^*abb\]

\[G = (\{A_0, A_1, A_2, A_3\}, \{a, b\}, \{A_0 \rightarrow a A_0, A_0 \rightarrow b A_0, A_0 \rightarrow a A_1, A_1 \rightarrow b A_2, A_2 \rightarrow b A_3, A_3 \rightarrow \epsilon\}, A_0)\]
Show that not all CF languages are regular.

To do this we only need to demonstrate that there exists a CFL that is not regular.

Consider \(L = \{ a^n b^n \mid n \geq 1 \} \)

Claim: \(L \in \text{CFL}, \ L \notin \text{RL} \)
Proof (sketch):

$L \in \text{CFL}$: $S \rightarrow aSb \mid ab$

$L \notin \text{RL}$ (by contradiction):

Assume L is regular. In this case there exists a DFA $D=(S,\Sigma,\delta,F,s_0)$ such that $L(D) = L$.

Let $k = |S|$. Consider a^ib^i, where $i > k$.

Suppose $\delta(s_0, a^i) = s_r$. Since $i > k$, not all of the states between s_0 and s_r are distinct. Hence, there are v and w, $0 \leq v < w \leq k$ such that $s_v = s_w$. In other words, there is a loop.

This DFA can certainly recognize a^ib^i but it can also recognize a^ib^i, where $i \neq j$, by following the loop.

"REGULAR GRAMMARS CANNOT COUNT"
public class Foo {
 public static void main(String[] args) {
 for (int i=0; i<args.length; i++) {
 if (args[i].length() < 3) { ...
 else { ...
 }
 }
}
Context Free Grammars and parsing

- \(O(n^3) \) algorithms to parse any CFG exist
- Programming language constructs can generally be parsed in \(O(n) \)
Top-down & bottom-up

- A top-down parser builds a parse tree from root to the leaves
 - easier to construct by hand
- A bottom-up parser builds a parse tree from leaves to root
 - Handles a larger class of grammars
 - tools (yacc/bison) build bottom-up parsers
Our presentation
First top-down, then bottom-up

- Present top-down parsing first.
- Introduce necessary vocabulary and data structures.
- Move on to bottom-up parsing second.