CSE443
Compilers

Dr. Carl Alphonce
alphonce@buffalo.edu
343 Davis Hall
Announcements

- Will be posted no later than Monday
 - HW-01
 - PR-01
- Team formation
 - Take a few minutes to do it now
 - Make private Piazza post with UBITS
Phases of a compiler

Figure 1.6, page 5 of text
We can describe a regular language using a regular expression
Why do we care?

- We will be using a tool called FLEX to construct a lexical analyzer (a lexer) for the programming language we're constructing a compiler for.
- If we give FLEX a regular expression describing the lexical structure of our language, FLEX will produce a C program which acts as our lexer.
- The next step for us to understand (at a high level) how FLEX converts a regex to a C program.
A regular expression can be implemented using a finite state machine.

Finite state machines can be deterministic or non-deterministic:

- DFA: deterministic finite automaton
- NFA: non-deterministic finite automaton
Process of building lexical analyzer

1) spell out the language
Process of building lexical analyzer

2) formulate a regular expression
Process of building lexical analyzer

3) build an NFA

(language -> regex -> NFA)
Process of building lexical analyzer

4) transform NFA to DFA
Process of building lexical analyzer

5) transform DFA to a minimal DFA
Process of building lexical analyzer

5) The minimal DFA is our lexical analyzer

language → regex → NFA → DFA → character stream

lexical analyzer → token stream
Step 1: Construct NFA from regex
Nondeterministic Finite Automata (NFA)

- A finite set of states S
- An alphabet Σ, $\varepsilon \notin \Sigma$
- $\delta \subseteq S \times (\Sigma \cup \{\varepsilon\}) \times \mathcal{P}(S)$ (transition function)
- $s_0 \in S$ (a single start state)
- $F \subseteq S$ (a set of final or accepting states)
Deterministic Finite Automata (DFA)

- A finite set of states \(S \)
- An alphabet \(\Sigma \), \(\varepsilon \notin \Sigma \)
- \(\delta \subseteq S \times \Sigma \times S \) (transition function)
- \(s_0 \in S \) (a single start state)
- \(F \subseteq S \) (a set of final or accepting states)
A state is a circle with its state number written inside.
Initial state has an arrow from nowhere pointing in. State 0 is often the initial state.
A final state is drawn with a double circle.
Arrows are labeled with ε ...

ε

... or $a \in \Sigma$.

a

for each $a \in \Sigma$
Regex \rightarrow NFA

For each $a \in \Sigma$
Regex → NFA
Simple example

static
Simple example

static
Simple example

static

struct

![Diagram showing a simple example with nodes labeled from 0 to 13 and arrows indicating transitions between them.](image-url)
Step 2: Construct DFA equivalent to NFA
first we construct an NFA from this regular expression
$(a|b)^*abb$
(a|b)*abb

a

b

Diagram shows a nondeterministic automaton with transitions from 'a' to 'a' and from 'b' to 'b'.
$(a|b)^*abb$
(a|b)*abb
\[(a|b)^*abb\]
$(a|b)^*abb$
$(a|b)^*abb$
Operations

- ε-closure(t) is the set of states reachable from state t using only ε-transitions.

- ε-closure(T) is the set of states reachable from any state $t \in T$ using only ε-transitions.

- move(T,a) is the set of states reachable from any state $t \in T$ following a transition on symbol $a \in \Sigma$.
NFA -> DFA algorithm
(set of states construction - page 153 of text)

Input: An NFA \(N = (S, \Sigma, \delta, s_0, F) \)

Output: A DFA \(D = (S', \Sigma, \delta', s_0', F') \) such that \(L(D) = L(N) \)

Algorithm:
Compute \(s_0' = \varepsilon\text{-closure}(s_0) \), an unmarked set of states
Set \(S' = \{ s_0' \} \)
while there is an unmarked \(T \in S' \)
mark \(T \)
for each symbol \(a \in \Sigma \)
let \(U = \varepsilon\text{-closure}(\text{move}(T, a)) \)
if \(U \notin S' \), add unmarked \(U \) to \(S' \)
add transition: \(\delta'(T, a) = U \)

\(F' \) is the subset of \(S' \) all of whose members contain a state in \(F \).
NFA -> DFA algorithm
(set of states construction - page 153 of text)

So' = \{ A = \{0,1,2,4,7\} \}

Pick an unmarked set from So', A, mark it, and \(\forall x \in \Sigma \) let \(U = \varepsilon\)-closure(move(A,x)), if \(U \notin S' \), add unmarked U to S' and add transition: \(\delta'(A,x) = U \)

S1' = \{ A' , B = \{1,2,3,4,6,7,8\} , C = \{1,2,4,5,6,7\}\}
\(\delta'(A,a) = B \)
\(\delta'(A,b) = C \)

Pick an unmarked set from S1', B, mark it, and \(\forall x \in \Sigma \) let \(U = \varepsilon\)-closure(move(B,x)), if \(U \notin S' \), add unmarked U to S' and add transition: \(\delta'(B,x) = U \)

S2' = \{ A' , B' , C , D = \{1,2,4,5,6,7,9\}\}
\(\delta'(B,a) = B \)
\(\delta'(B,b) = D \)

Pick an unmarked set from S2', C, mark it, and \(\forall x \in \Sigma \) let \(U = \varepsilon\)-closure(move(C,x)), if \(U \notin S' \), add unmarked U to S' and add transition: \(\delta'(C,x) = U \)

S3' = \{ A' , B' , C' , D \}
\(\delta'(C,a) = B \)
\(\delta'(C,b) = C \)
NFA -> DFA algorithm
(set of states construction - page 153 of text)

Pick an unmarked set from S_3', D, mark it, and $\forall x \in \Sigma$ let $U = \varepsilon$-closure(move(D, x)), if $U \not\in S'$, add unmarked U to S' and add transition: $\delta'(D, x) = U$

$S_4' = \{ A\checkmark, B\checkmark, C\checkmark, D\checkmark, E = \{1,2,4,5,6,7,10\} \}$

$\delta'(D,a) = B$

$\delta'(D,b) = E$

Pick an unmarked set from S_4', E, mark it, and $\forall a \in \Sigma$ let $U = \varepsilon$-closure(move(E, a)), if $U \not\in S'$, add unmarked U to S' and add transition: $\delta'(E, a) = U$

$S_5' = \{ A\checkmark, B\checkmark, C\checkmark, D\checkmark, E\checkmark \}$

$\delta'(E,a) = B$

$\delta'(E,b) = C$

Since there are no unmarked sets in S_5' the algorithm has reached a fixed point. STOP.

F' is the subset of S' all of whose members contain a state in F: $\{E\}$
The original NFA
The resulting DFA

DFA = (\{A, B, C, D, E\}, \{a, b\}, A, \delta', \{E\})

\begin{align*}
\delta'(A,a) &= B \\
\delta'(A,b) &= C \\
\delta'(B,a) &= B \\
\delta'(B,b) &= D \\
\delta'(C,a) &= B \\
\delta'(C,b) &= C \\
\delta'(D,a) &= B \\
\delta'(D,b) &= E \\
\delta'(E,a) &= B \\
\delta'(E,b) &= C
\end{align*}
Process of building lexical analyzer

5) The minimal DFA is our lexical analyzer
Step 3: DFA minimization
NFA for \((a|b)^{*}abb\)
DFA for \((a|b)^*abb\)
Minimization Algorithm
DFA -> minimal DFA algorithm

INPUT: An DFA \(D = (S, \Sigma, \delta, s_0, F) \)

OUTPUT: A DFA \(D' = (S', \Sigma, \delta', s'_0, F') \) such that
- \(S' \) is as small as possible, and
- \(\mathcal{L}(D) = \mathcal{L}(D') \)

ALGORITHM:
1. Let \(\pi = \{ F, S-F \} \)
2. Let \(\pi' = \pi \). For every group \(G \) of \(\pi \):
 - partition \(G \) into subgroups such that two states \(s \) and \(t \) are in the same subgroup iff for all input symbols \(a \), states \(s \) and \(t \) have transitions on \(a \) to states in the same group of \(\pi \)
 - Replace \(G \) in \(\pi' \) by the set of all subgroups formed
3. if \(\pi' = \pi \) let \(\pi'' = \pi \), otherwise set \(\pi = \pi' \) and repeat 2.
4. Choose one state in each group of \(\pi'' \) as a representative for that group.
 a) The start state of \(D' \) is the representative of the group containing the start state of \(D \)
 b) The accepting states of \(D' \) are the representatives of those groups that contain an accepting state of \(D \)
 c) Adjust transitions from representatives to representatives.
ORIGINAL DFA

\[D = (S, \Sigma, s_0, \delta, F) \]

\(S = \{A, B, C, D, E\} \)
\(\Sigma = \{a, b\} \)
\(s_0 = A \)
\(\delta = \{(A,a)\rightarrow B, (A,b)\rightarrow C, \)
 \((B,a)\rightarrow B, (B,b)\rightarrow D, \)
 \((C,a)\rightarrow B, (C,b)\rightarrow C, \)
 \((D,a)\rightarrow B, (D,b)\rightarrow E, \)
 \((E,a)\rightarrow B, (E,b)\rightarrow C\} \)
\(F = \{E\} \)
Finding the minimal set of distinct sets of states

\[\pi_0 = \{ F, S-F \} = \{ \{E\}, \{A,B,C,D\} \} \]

Pick a non-singleton set \(X = \{A,B,C,D\} \) from \(\pi_0 \) and check behavior of states on all transitions on symbols in \(\Sigma \) (are they to states in \(X \) or to other groups in the partition?)

\((A,a)\rightarrow B, (B,a)\rightarrow B, (C,a)\rightarrow B, (D,a)\rightarrow B\)
\((A,b)\rightarrow C, (B,b)\rightarrow D, (C,b)\rightarrow C, (D,b)\rightarrow E\)

\(D \) behaves differently, so put it in its own partition.
Finding the minimal set of distinct sets of states

\[\pi_1 = \{ \{E\}, \{A, B, C\}, \{D\} \} \]

Pick a non-singleton set \(X = \{A,B,C\} \) from \(\pi_1 \) and check behavior of states on all transitions on symbols in \(\Sigma \) (are they to states in \(X \) or to other groups in the partition?)

\[(A,a) \rightarrow B, \ (B,a) \rightarrow B, \ (C,a) \rightarrow B \]
\[(A,b) \rightarrow C, \ (B,b) \rightarrow D, \ (C,b) \rightarrow C \]

B behaves differently, so put it in its own partition.
Finding the minimal set of distinct sets of states

\[\pi_2 = \{ \{E\}, \{A, C\}, \{B\}, \{D\} \} \]

Pick a non-singleton set \(X = \{A, C\} \) from \(\pi_2 \) and check behavior of states on all transitions on symbols in \(\Sigma \) (are they to states in \(X \) or to other groups in the partition?)

\((A, a) \rightarrow B, (C, a) \rightarrow B \)
\((A, b) \rightarrow C, (C, b) \rightarrow C \)

A and C both transition outside the group on symbol a, to the same group (the one containing B). Therefore A and C are indistinguishable in their behaviors, so do not split this group.
Finding the minimal set of distinct sets of states

\[\pi_3 = \{ \{E\}, \{A, C\}, \{B\}, \{D\} \} = \pi_2 \]

We have reached a fixed point! STOP
Pick a representative from each group

\[\pi_{\text{final}} = \{ \{E\}, \{A, C\}, \{B\}, \{D\} \} \]
MINIMAL DFA

\[D' = (S', \Sigma, s'_0, \delta', F') \]

\(S' = \{B, C, D, E\} \) -> the representatives
\(\Sigma = \{a, b\} \) -> no change
\(s'_0 = C \) -> the representative of the group that contained D's starting state, A
\(\delta = \) (on next slide)
\(F = \{E\} \) -> the representatives of all the groups that contained any of D's final states (which, in this case, was just \{E\})
The new transition function δ'

- For each state $s \in S'$, consider its transitions in \mathcal{D}, on each $a \in \Sigma$.

- If $\delta(s,a) = t$, then $\delta'(s,a) = r$, where r is the representative of the group containing t.
\[\delta = \{ (B,a) \rightarrow B, (B,b) \rightarrow D, (C,a) \rightarrow B, (C,b) \rightarrow C, (D,a) \rightarrow B, (D,b) \rightarrow E, (E,a) \rightarrow B, (E,b) \rightarrow C \} \]
Minimal DFA for $(a|b)^*abb$
DFA for (ab|b)*abb

Non-minimized