CSE443
Compilers

Dr. Carl Alphonce
alphonce@buffalo.edu
343 Davis Hall
Phases of a compiler

Figure 1.7, page 5 of text
Example 4.51 [p. 260]

Grammar from example 4.48:

\[
S \rightarrow L = R \mid R \\
L \rightarrow *R \mid id \\
R \rightarrow L
\]

\[I_0: \quad S' \rightarrow .S\]
\[I_1: \quad S' \rightarrow S.\]
\[I_2: \quad S \rightarrow L = R\]
\[I_3: \quad S \rightarrow R.\]
\[I_4: \quad L \rightarrow *R\]
\[I_5: \quad L \rightarrow id.\]
\[I_6: \quad L \rightarrow id.\]
\[I_7: \quad L \rightarrow *R.\]
\[I_8: \quad R \rightarrow L.\]
\[I_9: \quad S \rightarrow L = R.\]

Figure 4.39: Canonical LR(0) collection for grammar (4.49)
Example 4.51 [p. 260]

Grammar from example 4.48:

\[
S \rightarrow L = R \mid R \\
L \rightarrow *R \mid \text{id} \\
R \rightarrow L
\]

"[This grammar] is not ambiguous. This shift/reduce conflict arises [because] SLR parser construction method [does not] remember enough left context..."
"Why can LR(0) automata be used to make shift-reduce decisions? The LR(0) automaton for a grammar characterizes the strings of grammar symbols that can appear on the stack... The stack contents must be a prefix of a right-sentential form. If the stack holds α and the rest of the input is x, then a sequence of reductions will take αx to S. In terms of derivations, $S \Rightarrow_{rm*} \alpha x.$" [p. 256]
Viable prefix

"Not all prefixes of right-sentential forms can appear on the stack...since the parser must not shift past the handle." [p. 256]

\[E \Rightarrow_{rm*} F \ast id \Rightarrow_{rm} (E) \ast id \]
"Not all prefixes of right-sentential forms can appear on the stack...since the parser must not shift past the handle." [p. 256]

\[E \Rightarrow_{rm^*} F \star id \Rightarrow_{rm} (E) \star id \]

(\(E \)) is a handle of \(F \rightarrow (E) \)
Viable prefix
(parser configurations shown)

($, ('id'), * id $)
($ ('id'), * id $)
($ ('id', ')'), * id $)
($ ('F', ')'), * id $)
($ ('T', ')'), * id $)
($ ('E', ')'), * id $)
($ ('E'), * id $)
($ F, * id $)
($ T, * id $)
($ T *, id $)
eetc.

Cannot shift '*' here, because
('E')
is a handle.
Viable prefix

"The prefixes of right sentential forms that can appear on the stack of a shift-reduce parser are called viable prefixes." [p. 256]
Viable prefix

Cannot shift '*' here, because

"(' E ')

is a handle.

Therefore

"(' E ')" *

is not a viable prefix.

eetc.
LR(1) items

"...in the SLR method, state I calls for reduction by $A \rightarrow \alpha$ if the set of items I_i contains item $[A \rightarrow \alpha \cdot]$ and input symbol a is in FOLLOW(A)." [p. 260]
LR(1) items

"In some situations, however, when state I appears on top of the stack the viable prefix $\beta \alpha$ on the stack is such that βA cannot be followed by a in any right-sentential form." [p. 260]
Example 4.51 [p. 260]

Grammar from example 4.48:

\[
S \to L = R \mid R \\
L \to *R \mid id \\
R \to L
\]

State I2 from figure 4.39

\[
S \to L \cdot = R \\
R \to L \cdot
\]

"Consider the set of items I2. The first item in this set makes ACTION[2,\text{"\=\text{\}}\text{"}] be 'shift 6'. Since FOLLOW(R) contains \text{"\=\text{\}}\text{"} \ldots \text{"\ldots\text{"}] the second item sets ACTION[2,\text{"\=\text{\}}\text{"}] to reduce R \to L." [p. 255]

"...the SLR parser calls for reduction by R \to L in state 2 with \text{"\=\text{\}}\text{"} as the next input (the shift action is also called for \ldots\). However, there is no right-sentential form of the grammar \ldots that begins R = \ldots . Thus state 2, which is the state corresponding to viable prefix L only, should not really call for reduction of that L to R." [p. 260]
LR(1) items

"By splitting states when necessary, we can arrange to have each state ... indicate exactly which input symbols can follow a handle α for which there is a possible reduction to $A.$" [p. 260]

"The general form of an item becomes

$$[A \rightarrow \alpha \odot \beta, a]$$

where $A \rightarrow \alpha\beta$ is a production and a is a terminal or ... $\$.$" [p. 260]
"The lookahead has no effect in an item of the form \([A \rightarrow \alpha \cdot \beta, a]\), where \(\beta\) is not \(\epsilon\), but an item of the form \([A \rightarrow \alpha \cdot, a]\) calls for reduction by \(A \rightarrow \alpha\) only if the next input symbol is \(a\). [...] The set of such \(a\)'s will always be a subset of \(\text{FOLLOW}(A)\), but it could be a proper subset ..." [p. 260]
"SLR and LALR tables ... always have the same number of states." [p. 266]

Idea: merge sets of LR(1) items with the same core.

Cannot introduce Shift/Reduce conflicts, may introduce Reduce/Reduce conflicts.

Bison and YACC produce LALR parsers.
Phases of a compiler

Figure 1.6, page 5 of text
Semantics

• “Semantics” has to do with the meaning of a program.

• We will consider two types of semantics:

 – Static semantics: semantics which can be enforced at compile-time.

 – Dynamic semantics: semantics which express the run-time meaning of programs.
Static semantics

- Semantic checking which can be done at compile-time

- Type-compatibility is a prime example
 - `int` can be assigned to `double` (type coercion)
 - `double` cannot be assigned to `int` without explicit type cast

- Type-compatibility can be captured in grammar, but only at expense of larger, more complex grammar
Ex: adding type rules in grammar

- Must introduce new non-terminals which encode types:
- Instead of a generic grammar rule for assignment:
 - `<stmt> → <var> ‘=’ <expr> ‘;’`
- we need multiple rules:
 - `<stmt> → <doubleVar> ‘=’ <intExpr> | <doubleExpr> ‘;’`
 - `<stmt> → <intVar> ‘=’ <intExpr> ‘;’`
- Of course, such rules need to handle all the relevant type possibilities (e.g. `byte`, `char`, `short`, `int`, `long`, `float` and `double`).
Alternative: attribute grammars

• Attribute grammars provide a neater way of encoding such information.
• Each syntactic rule of the grammar can be decorated with:
 – a set of semantic rules/functions
 – a set of semantic predicates
Attributes

• We can associate with each symbol X of the grammar a set of attributes A(X). Attributes are partitioned into:

 synthesized attributes S(X) – pass info up parse tree

 inherited attributes I(X) – pass info down parse tree
Semantic rules/functions

- We can associate with each rule R of the grammar a set of semantic functions.

- For rule \(x_0 \rightarrow x_1 \ x_2 \ldots \ x_n \)
 - synthesized attribute of LHS: \(S(x_0) = f(A(x_1), A(x_2), \ldots, A(x_n)) \)
 - inherited attribute of RHS member:
 for \(1 \leq j \leq n \), \(I(x_j) = f(A(x_0), \ldots, A(x_{j-1})) \)
 (note that dependence is on siblings to left only)
Predicates

• We can associate with each rule R of the grammar a set of semantic predicates.

• Boolean expression involving the attributes and a set of attribute values

• If \textit{true}, node is ok

• If \textit{false}, node violates a semantic rule
Example

<assign> → <var> = <expr>

Start with a production of the grammar
Example

\<assign\> \rightarrow \ <var\> = \ <expr\>

\<expr\>.expType

Associate an attribute with a non-terminal, \<expr\>, on the right of the production: expType (the expected type of the expression)
Example

<assign> → <var> = <expr>
<expr>.expType ← <var>.actType

Assign to <expr>.expType the value of <var>.actType, the actual type of the variable (the type the variable was declared as).
Example

\[
<\text{assign}> \rightarrow <\text{var}> = <\text{expr}>
\]
\[
<\text{expr}>.\text{expType} \leftarrow <\text{var}>.\text{actType}
\]

In other words, we expect the expression whose value is being assigned to a variable to have the same type as the variable.
Example

<assign> → <var> = <expr>
<expr>.expType ← <var>.actType

Another grammar production
Example

\[\text{Syntactic rule}
\]

\[\text{Semantic rule/function}
\]

\[\text{Semantic predicate}
\]

\[\text{<assign> } \rightarrow \text{ <var> } = \text{ <expr>}
\]
\[\text{<expr>.expType } \leftarrow \text{ <var>.actType}
\]

\[\text{<expr> } \rightarrow \text{ <var>[2] } + \text{ <var>[3]}
\]
\[\text{<expr>.actType } \leftarrow \text{ if (var[2].actType } = \text{ int) and}
\]
\[\text{ (var[3].actType } = \text{ int)}
\]
\[\text{then int}
\]
\[\text{else real}
\]

This production has a more involved semantic rule: it handles type coercion. This rule assume that there are only two numeric types (int and real) and that int can be coerced to real.
Example

Here is our first semantic predicate, which enforces a type-checking constraint: the actual type of `<expr>` must match the expected type (from elsewhere in the tree).
Example

<assign> → <var> = <expr>
<expr>.expType ← <var>.actType

<expr>.actType ← if (var[2].actType = int) and
 (var[3].actType = int)
 then int
 else real
<expr>.actType == <expr>.expType

Another production, with a semantic rule and a semantic predicate.
Example

<assign> → <var> = <expr>
<expr>.expType ← <var>.actType

<expr>.actType ← if (var[2].actType = int) and
 (var[3].actType = int)
 then int
 else real
<expr>.actType == <expr>.expType

<expr> → <var>
<expr>.actType ← <var>.actType
<expr>.actType == <expr>.expType

<var> → A | B | C
<var>.actType ← lookUp(<var>.string)

This semantic rule says that the type of an identifier is determined by looking up its type in the symbol table.
All the productions, rules and predicates

\[
<\text{assign}> \rightarrow <\text{var}> = <\text{expr}>
\]
\[
<\text{expr}>.\text{expType} \leftarrow <\text{var}>.\text{actType}
\]

\[
<\text{expr}> \rightarrow <\text{var}>[2] + <\text{var}>[3]
\]
\[
<\text{expr}>.\text{actType} \leftarrow \text{if (var}[2].\text{actType} = \text{int) and } (\text{var}[3].\text{actType} = \text{int) then int else real}
\]
\[
<\text{expr}>.\text{actType} == <\text{expr}>.\text{expType}
\]

\[
<\text{expr}> \rightarrow <\text{var}>
\]
\[
<\text{expr}>.\text{actType} \leftarrow <\text{var}>.\text{actType}
<\text{expr}>.\text{actType} == <\text{expr}>.\text{expType}
\]

\[
<\text{var}> \rightarrow A \mid B \mid C
\]
\[
<\text{var}>.\text{actType} \leftarrow \text{lookUp(<var>}.\text{string})
\]
Let's see how these rules work in practice!

In this example A and B are both of type int.
Suppose:
- A is int
- B is int

A = A + B

Effects of the semantic rules is shown in red.
This is the same example structure, but now assume A is of type real and B is of type int.
This is the same example structure, but now assume A is of type real and B is of type int.

Suppose:
A is real
B is int
This is the same example structure, but now assume A is of type real and B is of type int.

Suppose:
A is real
B is int
This is the same example structure, but now assume A is of type real and B is of type int.

Generate code to do conversion.

Suppose: A is real, B is int.
This is the same example structure, but now assume A is of type int and B is of type real.
This is the same example structure, but now assume A is of type int and B is of type real.

Suppose:
- A is int
- B is real
Houston, we have a problem! Semantic predicate is **false**.

Suppose:
- A is int
- B is real
Suppose:
A is int
B is real

A = A + B