Announcements

- Will be posted this afternoon:
 - HW-01
 - PR-01

- Team formation
 - Who is not yet part of a team?
 - Make private Piazza post with UBIT username, corresponding GitHub username, and a ranking of meeting time preferences.
Phases of a compiler

![Diagram showing the phases of a compiler]

Lexical structure

- Character stream
 - Lexical Analyzer
 - Token stream
 - Syntax Analyzer
 - Syntax tree
 - Semantic Analyzer
 - Syntax tree
 - Intermediate Code Generator
 - Intermediate representation
 - Machine-Independent Code Optimizer
 - Intermediate representation
 - Code Generator
 - Target-machine code
 - Machine-Dependent Code Optimizer
 - Target-machine code

Figure 1.6, page 5 of text
Process of building lexical analyzer

5) The minimal DFA is our lexical analyzer.
Focus last time

regex → NFA
focus today

NFA → DFA
first we construct an NFA from this regular expression

\[(a|b)^*abb\]
$(a|b)^*abb$
$(a|b)^*abb$
(a|b)*abb
$(a|b)^*abb$
(a|b)*a bb
$$(a|b)^*abb$$
(a|b)*abb
(a|b)*abb
Operations

- ε-closure(t) is the set of states reachable from state t using only ε-transitions.

- ε-closure(T) is the set of states reachable from any state $t \in T$ using only ε-transitions.

- $\text{move}(T,a)$ is the set of states reachable from any state $t \in T$ following a transition on symbol $a \in \Sigma$.
NFA -> DFA algorithm
(set of states construction - page 153 of text)

INPUT: An NFA $N = (S, \Sigma, \delta, s_0, F)$
OUTPUT: A DFA $D = (S', \Sigma, \delta', s'_0, F')$ such that $L(D) = L(N)$

ALGORITHM:
Compute $s'_0 = \varepsilon$-closure(s_0), an unmarked set of states
Set $S' = \{ s'_0 \}$
while there is an unmarked $T \in S'$
 mark T
 for each symbol $a \in \Sigma$
 let $U = \varepsilon$-closure$(\text{move}(T, a))$
 if $U \notin S'$, add unmarked U to S'
 add transition: $\delta'(T, a) = U$
F' is the subset of S' all of whose members contain a state in F.
NFA -> DFA algorithm
(set of states construction - page 153 of text)

\[S_0' = \{ A = \{0,1,2,4,7\} \} \]

Pick an unmarked set from \(S_0' \), \(A \), mark it, and \(\forall x \in \Sigma \) let \(U = \varepsilon\text{-closure}(\text{move}(A,x)) \), if \(U \notin S' \), add unmarked \(U \) to \(S' \) and add transition: \(\delta'(A,x) = U \)

\[S_1' = \{ A' , B = \{1,2,3,4,6,7,8\} , C = \{1,2,4,5,6,7\} \} \]
\[\delta'(A,a) = B \]
\[\delta'(A,b) = C \]

Pick an unmarked set from \(S_1' \), \(B \), mark it, and \(\forall x \in \Sigma \) let \(U = \varepsilon\text{-closure}(\text{move}(B,x)) \), if \(U \notin S' \), add unmarked \(U \) to \(S' \) and add transition: \(\delta'(B,x) = U \)

\[S_2' = \{ A' , B' , C , D = \{1,2,4,5,6,7,9\} \} \]
\[\delta'(B,a) = B \]
\[\delta'(B,b) = D \]

Pick an unmarked set from \(S_2' \), \(C \), mark it, and \(\forall x \in \Sigma \) let \(U = \varepsilon\text{-closure}(\text{move}(C,x)) \), if \(U \notin S' \), add unmarked \(U \) to \(S' \) and add transition: \(\delta'(C,x) = U \)

\[S_3' = \{ A' , B' , C' , D \} \]
\[\delta'(C,a) = B \]
\[\delta'(C,b) = C \]
Pick an unmarked set from S_3', D, mark it, and $\forall x \in \Sigma$ let $U = \varepsilon$-closure$(move(D,x))$, if $U \in S'$, add unmarked U to S' and add transition: $\delta'(D,x) = U$

$S_4' = \{ A^\bullet, B^\bullet, C^\bullet, D^\bullet, E = \{1,2,4,5,6,7,10\} \}$

$\delta'(D,a) = B$

$\delta'(D,b) = E$

Pick an unmarked set from S_4', E, mark it, and $\forall a \in \Sigma$ let $U = \varepsilon$-closure$(move(E,a))$, if $U \in S'$, add unmarked U to S' and add transition: $\delta'(E,a) = U$

$S_5' = \{ A^\bullet, B^\bullet, C^\bullet, D^\bullet, E^\bullet \}$

$\delta'(E,a) = B$

$\delta'(E,b) = C$

Since there are no unmarked sets in S_5' the algorithm has reached a fixed point. STOP.

F' is the subset of S' all of whose members contain a state in F: $\{E\}$
The original NFA
The resulting DFA

\[
\text{DFA} = (\{A, B, C, D, E\}, \{a, b\}, A, \delta', \{E\}), \text{ where}
\]

\[
\begin{align*}
\delta'(A,a) &= B \\
\delta'(A,b) &= C \\
\delta'(B,a) &= B \\
\delta'(B,b) &= D \\
\delta'(C,a) &= B \\
\delta'(C,b) &= C \\
\delta'(D,a) &= B \\
\delta'(D,b) &= E \\
\delta'(E,a) &= B \\
\delta'(E,b) &= C
\end{align*}
\]
The minimal DFA is our lexical analyzer.
focus above:
NFA to DFA conversion
next step: DFA minimization
NFA for \((a|b)^*abb\)
DFA for \((a|b)^*abb\)
Minimization
Algorithm
DFA -> minimal DFA algorithm

INPUT: An DFA $D = (S, \Sigma, \delta, s_0, F)$

OUTPUT: A DFA $D' = (S', \Sigma, \delta', s'_0, F')$ such that
- S' is as small as possible, and
- $L(D) = L(D')$

ALGORITHM:
1. Let $\pi = \{ F, S-F \}$
2. Let $\pi' = \pi$. For every group G of π:
 - Partition G into subgroups such that two states s and t are in the same subgroup iff for all input symbols a, states s and t have transitions on a to states in the same group of π
 - Replace G in π' by the set of all subgroups formed
3. If $\pi' = \pi$ let $\pi'' = \pi$, otherwise set $\pi = \pi'$ and repeat 2.
4. Choose one state in each group of π'' as a representative for that group.
 a) The start state of D' is the representative of the group containing the start state of D
 b) The accepting states of D' are the representatives of those groups that contain an accepting state of D
 c) Adjust transitions from representatives to representatives.
ORIGINAL DFA

\[D = (S, \Sigma, s_0, \delta, F) \]

\[S = \{A, B, C, D, E\} \]
\[\Sigma = \{a, b\} \]
\[s_0 = A \]
\[\delta = \{(A,a)\rightarrow B, (A,b)\rightarrow C, \\
(B,a)\rightarrow B, (B,b)\rightarrow D, \\
(C,a)\rightarrow B, (C,b)\rightarrow C, \\
(D,a)\rightarrow B, (D,b)\rightarrow E, \\
(E,a)\rightarrow B, (E,b)\rightarrow C\} \]
\[F = \{E\} \]
Finding the minimal set of distinct sets of states

\[\pi_0 = \{ F, S-F \} = \{ \{E\}, \{A,B,C,D\} \} \]

Pick a non-singleton set \(X = \{A,B,C,D\} \) from \(\pi_0 \) and check behavior of states on all transitions on symbols in \(\Sigma \) (are they to states in \(X \) or to other groups in the partition?)

\[(A,a)\rightarrow B, (B,a)\rightarrow B, (C,a)\rightarrow B, (D,a)\rightarrow B \]
\[(A,b)\rightarrow C, (B,b)\rightarrow D, (C,b)\rightarrow C, (D,b)\rightarrow E \]

\(D \) behaves differently, so put it in its own partition.
Finding the minimal set of distinct sets of states

\[\pi_1 = \{ \{E\}, \{A, B, C\}, \{D\} \} \]

Pick a non-singleton set \(X = \{A, B, C\}\) from \(\pi_1\) and check behavior of states on all transitions on symbols in \(\Sigma\) (are they to states in \(X\) or to other groups in the partition?)

- \((A, a)\rightarrow B\), \((B, a)\rightarrow B\), \((C, a)\rightarrow B\)
- \((A, b)\rightarrow C\), \((B, b)\rightarrow D\), \((C, b)\rightarrow C\)

\(B\) behaves differently, so put it in its own partition.
Finding the minimal set of distinct sets of states

\[\pi_2 = \{ \{E\}, \{A, C\}, \{B\}, \{D\} \} \]

Pick a non-singleton set \(X = \{A,C\} \) from \(\pi_2 \) and check behavior of states on all transitions on symbols in \(\Sigma \) (are they to states in \(X \) or to other groups in the partition?)

\[(A,a) \to B, (C,a) \to B\]
\[(A,b) \to C, (C,b) \to C\]

A and C both transition outside the group on symbol a, to the same group (the one containing B). Therefore A and C are indistinguishable in their behaviors, so do not split this group.
Finding the minimal set of distinct sets of states

\[\pi_3 = \{ \{E\}, \{A, C\}, \{B\}, \{D\} \} = \pi_2 \]

We have reached a fixed point! STOP
Pick a representative from each group

$$\pi_{\text{final}} = \{ \{E\}, \{A, C\}, \{B\}, \{D\} \}$$
MINIMAL DFA

\[D' = (S', \Sigma, s'_0, \delta', F') \]

\[S' = \{B, C, D, E\} \rightarrow \text{the representatives} \]
\[\Sigma = \{a, b\} \rightarrow \text{no change} \]
\[s'_0 = C \rightarrow \text{the representative of the group that contained D's starting state, A} \]
\[\delta = (\text{on next slide}) \]
\[F = \{E\} \rightarrow \text{the representatives of all the groups that contained any of D's final states (which, in this case, was just \{E\})} \]
The new transition function δ'

- For each state $s \in S'$, consider its transitions in \mathcal{D}, on each $a \in \Sigma$.

- If $\delta(s,a) = t$, then $\delta'(s,a) = r$, where r is the representative of the group containing t.
\[\delta = \{ (B,a) \rightarrow B, (B,b) \rightarrow D, (C,a) \rightarrow B, (C,b) \rightarrow C, (D,a) \rightarrow B, (D,b) \rightarrow E, (E,a) \rightarrow B, (E,b) \rightarrow C \} \]
Minimal DFA for $(a|b)^*abb$
DFA for \((a|b)^*abb\)

Non-minimized