Announcements

- Will be posted this afternoon:
 - HW-01
 - PR-01

- Team formation
 - Who is not yet part of a team?
 - Make private Piazza post with UBIT username, corresponding GitHub username, no later than 5:00 PM.
 - Any students not part of a team at 5:00 will be placed on a team (by me).
Phases of a compiler

Figure 1.6, page 5 of text
5) The minimal DFA is our lexical analyzer.
Focus last time

regex → NFA
focus today

NFA \rightarrow DFA
first we construct an NFA
from this regular expression

(alb)*abb
$(ab)^*abb$
\((a|b)^*abb\)
$(a|b)^*abb$
(a|b)*abb
$(a|b)^*abb$
$(a|b)^*abb$
Operations

- ε-closure(t) is the set of states reachable from state t using only ε-transitions.

- ε-closure(T) is the set of states reachable from any state $t \in T$ using only ε-transitions.

- move(T,a) is the set of states reachable from any state $t \in T$ following a transition on symbol $a \in \Sigma$.
NFA -> DFA algorithm
(set of states construction - page 153 of text)

- **INPUT**: An NFA N = (S, Σ, δ, s₀, F)
- **OUTPUT**: A DFA D = (S', Σ, δ', s₀', F') such that \(\mathcal{L}(D) = \mathcal{L}(N) \)
- **ALGORITHM**:
 - Compute \(s₀' = \varepsilon\)-closure(s₀), an unmarked set of states
 - Set \(S' = \{ s₀' \} \)
 - while there is an unmarked \(T \in S' \)
 - mark \(T \)
 - for each symbol \(a \in \Sigma \)
 - let \(U = \varepsilon\)-closure(move(T,a))
 - if \(U \notin S' \), add unmarked \(U \) to \(S' \)
 - add transition: \(\delta'(T,a) = U \)
 - \(F' \) is the subset of \(S' \) all of whose members contain a state in \(F \).
NFA -> DFA algorithm
(set of states construction - page 153 of text)

$S_0' = \{ A = \{0,1,2,4,7\} \}$

Pick an unmarked set from S_0', A, mark it, and $\forall x \in \Sigma$ let $U = \varepsilon$-closure(move(A,x)), if $U \notin S'$, add unmarked U to S' and add transition: $\delta'(A,x) = U$

$S_1' = \{ A' , B = \{1,2,3,4,6,7,8\} , C = \{1,2,4,5,6,7\}\}$

$\delta'(A,a) = B$

$\delta'(A,b) = C$

Pick an unmarked set from S_1', B, mark it, and $\forall x \in \Sigma$ let $U = \varepsilon$-closure(move(B,x)), if $U \notin S'$, add unmarked U to S' and add transition: $\delta'(B,x) = U$

$S_2' = \{ A' , B' , C , D = \{1,2,4,5,6,7,9\}\}$

$\delta'(B,a) = B$

$\delta'(B,b) = D$

Pick an unmarked set from S_2', C, mark it, and $\forall x \in \Sigma$ let $U = \varepsilon$-closure(move(C,x)), if $U \notin S'$, add unmarked U to S' and add transition: $\delta'(C,x) = U$

$S_3' = \{ A' , B' , C' , D \}$

$\delta'(C,a) = B$

$\delta'(C,b) = C$

NFA → DFA algorithm

(set of states construction - page 153 of text)

Pick an unmarked set from S_3', D, mark it, and $\forall x \in \Sigma$ let $U = \varepsilon$-closure$(\text{move}(D,x))$,
if $U \notin S'$, add unmarked U to S' and add transition: $\delta'(D,x) = U$

$S_4' = \{ A^\vee, B^\vee, C^\vee, D^\vee, E = \{1,2,4,5,6,7,10\} \}$

$\delta'(D,a) = B$

$\delta'(D,b) = E$

Pick an unmarked set from S_4', E, mark it, and $\forall a \in \Sigma$ let $U = \varepsilon$-closure$(\text{move}(E,a))$,
if $U \notin S'$, add unmarked U to S' and add transition: $\delta'(E,a) = U$

$S_5' = \{ A^\vee, B^\vee, C^\vee, D^\vee, E^\vee \}$

$\delta'(E,a) = B$

$\delta'(E,b) = C$

Since there are no unmarked sets in S_5' the algorithm has reached a fixed point.

STOP.

F' is the subset of S' all of whose members contain a state in F: $\{E\}$
The original NFA
The resulting DFA

DFA = (\{A, B, C, D, E\}, \{a, b\}, A, \delta', \{E\})

where

\(\delta'(A, a) = B\)
\(\delta'(A, b) = C\)
\(\delta'(B, a) = B\)
\(\delta'(B, b) = D\)
\(\delta'(C, a) = B\)
\(\delta'(C, b) = C\)
\(\delta'(D, a) = B\)
\(\delta'(D, b) = E\)
\(\delta'(E, a) = B\)
\(\delta'(E, b) = C\)
Process of building lexical analyzer

5) The minimal DFA is our lexical analyzer
focus above:
NFA to DFA conversion
next step: DFA minimization
NFA for \((a|b)^*abb\)
DFA for \((a|b)^*abb\)
Minimization Algorithm
DFA -> minimal DFA algorithm

INPUT: An DFA $D = (S, \Sigma, \delta, s_0, F)$

OUTPUT: A DFA $D' = (S', \Sigma, \delta', s_0', F')$ such that
- S' is as small as possible, and
- $\mathcal{L}(D) = \mathcal{L}(D')$

ALGORITHM:
1. Let $\pi = \{ F, S-F \}$
2. Let $\pi' = \pi$. For every group G of π:
 - partition G into subgroups such that two states s and t are in the same subgroup iff for all input symbols a, states s and t have transitions on a to states in the same group of π
 - Replace G in π' by the set of all subgroups formed
3. if $\pi' = \pi$ let $\pi'' = \pi$, otherwise set $\pi = \pi'$ and repeat 2.
4. Choose one state in each group of π'' as a representative for that group.
 a) The start state of D' is the representative of the group containing the start state of D
 b) The accepting states of D' are the representatives of those groups that contain an accepting state of D
 c) Adjust transitions from representatives to representatives.
ORIGINAL DFA

\[D = (S, \Sigma, s_0, \delta, F) \]

\[S = \{ A, B, C, D, E \} \]
\[\Sigma = \{ a, b \} \]
\[s_0 = A \]
\[\delta = \{ (A,a) \rightarrow B, (A,b) \rightarrow C, \]
\[(B,a) \rightarrow B, (B,b) \rightarrow D, \]
\[(C,a) \rightarrow B, (C,b) \rightarrow C, \]
\[(D,a) \rightarrow B, (D,b) \rightarrow E, \]
\[(E,a) \rightarrow B, (E,b) \rightarrow C \} \]
\[F = \{ E \} \]
Finding the minimal set of distinct sets of states

\[\pi_0 = \{ F, S-F \} = \{ \{ E \}, \{ A, B, C, D \} \} \]

Pick a non-singleton set \(X = \{ A, B, C, D \} \) from \(\pi_0 \) and check behavior of states on all transitions on symbols in \(\Sigma \) (are they to states in \(X \) or to other groups in the partition?)

\[
(A, a)\rightarrow B, \ (B, a)\rightarrow B, \ (C, a)\rightarrow B, \ (D, a)\rightarrow B \\
(A, b)\rightarrow C, \ (B, b)\rightarrow D, \ (C, b)\rightarrow C, \ (D, b)\rightarrow E
\]

\(D \) behaves differently, so put it in its own partition.
Finding the minimal set of distinct sets of states

\[\pi_1 = \{ \{E\}, \{A, B, C\}, \{D\} \} \]

Pick a non-singleton set \(X = \{A, B, C\} \) from \(\pi_1 \) and check behavior of states on all transitions on symbols in \(\Sigma \) (are they to states in \(X \) or to other groups in the partition?)

\[
\begin{align*}
(A, a) & \rightarrow B, \\
(B, a) & \rightarrow B, \\
(C, a) & \rightarrow B \\
(A, b) & \rightarrow C, \\
(B, b) & \rightarrow D, \\
(C, b) & \rightarrow C
\end{align*}
\]

\(B \) behaves differently, so put it in its own partition.
Finding the minimal set of distinct sets of states

\[\pi_2 = \{ \{E\}, \{A, C\}, \{B\}, \{D\} \} \]

Pick a non-singleton set \(X = \{A, C\} \) from \(\pi_2 \) and check behavior of states on all transitions on symbols in \(\Sigma \) (are they to states in \(X \) or to other groups in the partition?)

\((A, a)\rightarrow B, (C, a)\rightarrow B\)
\((A, b)\rightarrow C, (C, b)\rightarrow C\)

A and C both transition outside the group on symbol a, to the same group (the one containing B). Therefore A and C are indistinguishable in their behaviors, so do not split this group.
Finding the minimal set of distinct sets of states

\[\pi_3 = \{ \{E\}, \{A, C\}, \{B\}, \{D\} \} = \pi_2 \]

We have reached a fixed point! STOP
Pick a representative from each group

$$\pi_{\text{final}} = \{ \{E\}, \{A, C\}, \{B\}, \{D\} \}$$
MINIMAL DFA

\[D' = (S', \Sigma, s'0, \delta', F') \]

\[S' = \{B, C, D, E\} \rightarrow \text{the representatives} \]
\[\Sigma = \{a, b\} \rightarrow \text{no change} \]
\[s'0 = C \rightarrow \text{the representative of the group that contained D's starting state, A} \]
\[\delta = \text{(on next slide)} \]
\[F = \{E\} \rightarrow \text{the representatives of all the groups that contained any of D's final states (which, in this case, was just \{E\})} \]
The new transition function δ'

- For each state $s \in S'$, consider its transitions in D, on each $a \in \Sigma$.

- If $\delta(s, a) = t$, then $\delta'(s, a) = r$, where r is the representative of the group containing t.
\[\delta = \{ (B,a) \rightarrow B, (B,b) \rightarrow D, \\
(C,a) \rightarrow B, (C,b) \rightarrow C, \\
(D,a) \rightarrow B, (D,b) \rightarrow E, \\
(E,a) \rightarrow B, (E,b) \rightarrow C \} \]
Minimal DFA for \((a|b)^*abb\)
DFA for \((a|b)^*abb\)

Non-minimized