

1

CSE306 - Software Quality in Practice
Spring 2024

COURSE INFORMATION
Lecture times – M/W 8:00 – 8:50
Location – NSC 215

Lab times – R1 T/Th 2:00 – 4:00; R2 T/Th 4:00 – 6:00; R3 T/Th 6:00 – 8:00; R4 T/Th 8:00 – 10:00
Location – Bell 340

Number of credits: 4

Instructor(s) names and contact information: On-line appointment: https://calendly.com/alphonce
Dr. Carl Alphonce Office hours: Tuesdays 1:15 PM – 2:45 PM
e-mail : alphonce@buffalo.edu Wednesdays 1:15 PM – 2:45 PM

COURSE DESCRIPTION
Software is seldom bug-free. Finding and fixing the source of unintended behavior in software can be challenging. This
course covers tools and techniques for identifying and locating various types of quality defects in code (such as memory
bugs, performance bugs, dependency bugs) and how to write code that lends itself to debugging.

Course Prerequisite: CSE220 Systems Programming

STUDENT LEARNING OUTCOMES

Course Learning Outcome Program Outcomes / Competencies Instructional
Method(s)

Assessment Method(s)

(I) Employ static and
dynamic analysis tools to
detect faults in a given
piece of software.

CS program:
(2) An ability to design, implement,
and evaluate a computing-based
solution to meet a set of computing
requirements in the context of the
program's discipline
(6) An ability to apply computer
science theory and software
development fundamentals to
produce computing-based solutions
CEN program:
(6) An ability to develop and conduct
appropriate experimentation, analyse
and interpret data, and use
engineering judgement to draw
conclusions
(7) An ability to acquire and apply
new knowledge as needed, using
appropriate learning strategies

Lecture-based
instruction

Lab-based
hands-on
exercises, both
individual and
group

Lab exercises
Exploratory projects
Lab practical exam
Process project
 (II) Employ profiling tools

to identify performance
issues (both time and
memory) in a given piece of
software.
(III) Employ testing
frameworks to write tests
that fail in the presence of
software faults, and pass
otherwise
(IV) Employ a structured,
methodical approach to
detecting, testing,
identifying and correcting
software faults.

Process project
Exploratory projects
Lab practical exam

(V) Work productively as a
member of a software
development team.

CS program:
(5) An ability to function effectively as
a member of leader of a team
engaged in activities appropriate to
the program's discipline

Lab-based
hands-on group
exercises

Process project
Exploratory projects

mailto:alphonce@buffalo.edu

2

CEN program:
(5) an ability to function effectively on
a team whose members together
provide leadership, create a
collaborative and inclusive
environment, establish goals, plan
tasks, and meet objectives

ABET CAC Student Outcome support (CS):

STUDENT OUTCOME 1 2 3 4 5 6
SUPPORT LEVEL 0 1 0 0 2 2

ABET EAC Student Outcome support (CEN):
STUDENT OUTCOME 1 2 3 4 5 6 7
SUPPORT LEVEL 0 0 0 0 2 2 2

COURSE REQUIREMENTS

• TEAM WORK
o (PRE)/(PST) A “process” team project, done twice, once as a pre-assessment in weeks 1, 2, and 3 of the

semester, and a second time as a post-assessment in weeks 10, 11 and 12. Students are required to
document their development/debugging process. Learning outcome (IV).

o (EXP) Team-based exploratory project. This project asks students to apply the tools and techniques they
have been taught up to that point in the course to open-source projects. Students must document their
use of the tools and the results they obtained. Covers learning outcomes (I), (II), (III) and (IV).

• INDIVIDUAL WORK
o (LEX) Twice weekly lab-based exercises, completed in the lab session. These are structured to give

students practice with the full range of tools and techniques discussed throughout the semester, and so
cover learning outcomes (I), (II), and (III).

o (LPR) A two-part in-lab practical exam, in week 13. Covers learning outcomes (I), (II), (III) and (IV).
• ENGAGEMENT

o (ACT) Active learning is incorporated into lecture to promote and support student learning.

GRADING POLICY

• Each piece of student work will be assessed using performance indicators with associated rubrics, with
performance levels “insufficient evidence”, “developing”, “secure”, and “exemplary”. The overall grade for a
piece of work is determined by comparing actual performance relative to performance expectations, published
with each assignment. Towards the end of the course students are expected to perform at or above the
"secure" level.

• TopHat will be used to administer student response questions. Students earn a point for each question they
answer, and additional point for each question they answer correctly.

3

Component weighting
 Weighting Assessment / Assignment

Te
am

w

or
k

2% Pre-assessment process project
(PRE)

12% Exploratory projects
(EXP)

16% Post-assessment process project
(PST)

In
di

vi
du

al

w
or

k 30% Lab exercises
(LEX)

30% Lab practical exams
(LPR)

M
ix

ed

10% Student Response Questions
(ACT)

 100% TOTAL

Course Grades:
Grade Quality Points Percentage
A 4.0 93.0% -100.00%
A- 3.67 90.0% - 92.9%
B+ 3.33 87.0% - 89.9%
B 3.00 83.0% - 86.9%
B- 2.67 80.0% - 82.9%
C+ 2.33 77.0% - 79.9%
C 2.00 73.0% - 76.9%
C- 1.67 70.0% - 72.9%
D+ 1.33 67.0% - 69.9%
D 1.00 60.0% - 66.9%
F 0 59.9 or below

Any work missed for legitimate and documented reasons can be made up, but arrangements must be made with the
instructor in a timely fashion (no later than due date, unless medically unable).

Incompletes (I/IU): Unless superseded by changes in university policy, a grade of incomplete (“I”) indicates that
additional course work is required to fulfill the requirements of a given course. Students may only be given an “I” grade
if they have a passing average in coursework that has been completed and have well-defined parameters to complete
the course requirements that could result in a grade better than the default grade. An “I” grade may not be assigned to a
student who did not attend the course.

ACADEMIC INTEGRITY
Academic integrity is a fundamental university value. Through the honest completion of academic work, students sustain
the integrity of the university while facilitating the university's imperative for the transmission of knowledge and culture
based upon the generation of new and innovative ideas. See the Academic Integrity Policies of the university
(https://catalogs.buffalo.edu/content.php?catoid=1&navoid=19#academic-integrity) as well as the CSE department
(https://engineering.buffalo.edu/computer-science-engineering/information-for-students/undergraduate-program/cse-
undergraduate-academic-policies/cse-academic-integrity-policy.html for details.

ACCESSIBILITY RESOURCES

Accessibility Resources coordinates reasonable accommodations for equitable access to UB for students with
disabilities.

https://www.buffalo.edu/studentlife/who-we-are/departments/accessibility.html

COUNSELING SERVICES

Counseling Services can help with emotional issues, stress, crisis management and much more to support mental
wellness through a variety of services.

https://www.buffalo.edu/studentlife/who-we-are/departments/counseling.html

https://catalogs.buffalo.edu/content.php?catoid=1&navoid=19#academic-integrity
https://engineering.buffalo.edu/computer-science-engineering/information-for-students/undergraduate-program/cse-undergraduate-academic-policies/cse-academic-integrity-policy.html
https://engineering.buffalo.edu/computer-science-engineering/information-for-students/undergraduate-program/cse-undergraduate-academic-policies/cse-academic-integrity-policy.html
https://www.buffalo.edu/studentlife/who-we-are/departments/accessibility.html
https://www.buffalo.edu/studentlife/who-we-are/departments/counseling.html

4

COURSE ORGANIZATION / SCHEDULE (TENTATIVE AND SUBJECT TO CHANGE)
Week # Topic

1 Overview, "Golden rules" of debugging
2 Compiler (incl. flags), Code repositories (git)
3 Specifications and testing frameworks (CUnit)
4 Debugging process (gdb)
5 Test Driven Development (TDD, behavioral/structural testing), build tools (make)
6 Build tools (make), coverage testing (gcov)
7 Process exercises
8 Performance issues, profiling (gprof)
9 Memory issues (valgrind)

10 Shell scripting
11 Teamwork issues (collaboration boards)
12 Review: memory issues, build tools
13 Review: process
14 Tools in other languages

COURSE MATERIALS

• The Developer’s Guide to Debugging, Grötker, Holtmann, Keding, Wloka. Springer Science + Business Media B.V.,
2008 (recommended)

• TopHat student response system (required)

VALUES STATEMENT
The Department of Computer Science and Engineering at the University at Buffalo is a community dedicated to
supporting excellence in scholarship and professionalism in all areas of computing. As a community we are bound
together by humanity, diversity, equity, inclusiveness, and integrity.

Humanity embodies the ideal that all people are worthy of respect and dignity.

Diversity celebrates that every lived experience informs and can give voice to new discoveries, the lifeblood of
innovation.

Equity recognizes that opportunities must be accessible to all.

Inclusiveness ensures that all are welcome and know they are valued members of the CSE community.

Integrity is the obligation to earn and maintain the trust of others.

In concert, these ideals are the foundation for effecting positive change in the world and contribute to personal and
professional growth and success.

