
C S E 3 0 6
S O F T W A R E Q U A L I T Y I N P R A C T I C E

Dr. Carl Alphonce
alphonce@buffalo.edu
343 Davis Hall

www.cse.buffalo.edu/faculty/alphonce/SP24/CSE306

L AT E J O I N E R S

• I update the rosters in Piazza and AutoLab regularly from the
UBLearns classlist (next update will be before labs tomorrow).

• If you joined the recently it may take a day (possibly two) for the
changes to propagate through all the systems.

• We will NOT be strict on the deadlines for LEX01 and LEX02 (to
accommodate students registering through end of add/drop): we
will allow submissions until 11:59 PM Friday. (15 students have not
yet submitted LEX01).

• If you missed your lab session, do the LEX as soon as you can on
your own time: post questions and requests for assistance in Piazza.

R E M I N D E R S

• Syllabus: posted on website

• Academic Integrity

• Team formation - make sure to form teams and give
composition in a private Piazza message.

• PRE will be posted once teams are formed.

• If necessary I will step in and assign students to teams.

C O M P I L E R

• On cerf use /usr/bin/gcc compiler (this is 9.4.0, and
should be your default)

• use -std=c11 (you can use other options too)

• test on cerf.cse.buffalo.edu (that’s our reference
system)

http://cerf.cse.buffalo.edu

S TAT I C V S D Y N A M I C
P R O G R A M A N A LY S I S

• static analysis - done on program without executing it

• dynamic analysis - done on program by executing it

T H E C O M P I L E R :
A S TAT I C A N A LY S I S T O O L

• We will explore what a compiler can and can’t tell us
about our code.

C O M P I L I N G A N D R U N N I N G C O D E

Textbook, page 6

C O M P I L I N G A N D R U N N I N G C O D E

Textbook, page 6

STATIC

DYNAMIC

T E X T, P G 8

T O P H AT (P R A C T I C E) Q U E S T I O N S

1 . U N D E R S TA N D T H E R E Q U I R E M E N T S

• Is it a bug or a misunderstanding of expected
behavior?

• Requirements will tell you.

2 . M A K E I T FA I L

• Write test cases to isolate bug and make it
reproducible.

• This will increase confidence that bug is fixed later.

• These tests will be added to the suite of regression
tests (“does today’s code pass yesterday’s tests?”)

3 . S I M P L I F Y T H E T E S T C A S E

• Ensure there is nothing extraneous in the test case.

• Keep it simple! Whittle it down until you get at the
essence of the failure.

4 . R E A D T H E R I G H T E R R O R M E S S A G E

• “Everything that happened after the first thing went
wrong should be eyed with suspicion. The first
problem may have left the program in a corrupt state.”
[p. 9]

5 . C H E C K T H E P L U G

• Don’t overlook the obvious - things like permissions,
file system status, available memory.

• “Think of ten common mistakes, and ensure nobody
made them.” [p. 9]

6 . S E PA R AT E FA C T F R O M F I C T I O N

• “Don’t assume!”

• Can you prove what you believe to be true?

7 . D I V I D E A N D C O N Q U E R

• Beware bugs caused by interactions amongst
components.

• Develop a list of suspects (source code, compiler,
environment, libraries, machine, etc)

• Each component alone may work correctly, but in
combination bad things happen

• Can be especially tricky with multithreaded programs

8 . M AT C H T H E T O O L T O T H E B U G

• If all you have is a hammer … you’ll end up with a very
sore thumb.

• Build a solid toolkit to give you choices.

• Use multiple tools/approaches (e.g. testing and
debugging work better together than either alone)

9 . O N E C H A N G E AT A T I M E

• Be methodical. If you make multiple changes at one
you can't tease apart which change had which effect.

• With your list of suspects, document what you predict
the outcome of a change will be.

• Document the changes you make, and the results.

• Did results match predictions?

