CSE306
SOFTWARE QUALITY IN PRACTIC

Dr. Carl Alphonce
alphonce@buftalo.edu
343 Davis Hall

www.cse.buffalo.edu/faculty/alphonce/SP24/CSE306

LATE JOINERS

e | update the rosters in Piazza and AutolLab regularly from the
UBLearns classlist (next update will be before labs tomorrow).

e |f you joined the recently it may take a day (possibly two) for the
changes to propagate through all the systems.

e \We will NOT be strict on the deadlines for LEX0O1 and LEXO2 (to
accommodate students registering through end of add/drop): we
will allow submissions until 11:59 PM Friday. (15 students have not

yet submitted LEXOT).

e |f you missed your lab session, do the LEX as soon as you can on
your own time: post questions and requests for assistance in Piazza.

EMINDERS

Syllabus: posted on website
Academic Integrity

Team formation - make sure to form teams and give
composition in a private Plazza message.

PRE will be posted once teams are formed.

It necessary | will step in and assign students to teams.

COMPILER

e On cerf use /usr/bin/gcc compiler (this is 9.4.0, and
should be your default)

e use -std=c11 (you can use other options too)

e test on cert.cse.buftalo.edu (that's our reterence

system)

http://cerf.cse.buffalo.edu

STATIC VS DYNAMIC
PROGRAM ANALYSIS

e static analysis - done on program without executing it

e dynamic analysis - done on program by executing it

THE COMPILER:
A STATIC ANALYSIS TOOL

e We will explore what a compiler can and can't tell us
about our code.

COMPILING AND RUNNING CODE

O kit
eﬁmtmns

|
source code

#ifdef debug

7 A Systematic Approach to Deb“gging

@options @options

'

v

preprocessor

>

compiler | —p| linker = @

(=)

N)

\ 2

v

@/ inputJL_>

your program

Piv

debugger

|

Fig. 2.1{ Simplified build and test flow

7/ output /

COMPILING AND RUNNING CODE

O kit
eﬁmtmm

|
source code

#ifdef debug

2. & Systematic Approach to Debugg'mg

@options @options

'

v

preprocessor

>

compiler

N)

26,

linker
e : i 1©)

!
v

@/ inputJZ__.

your program

Piv

debugger

|

Fig. 2.1 Simplified build and test flow

7/ output /

TEXT, PG 8

The 13 Golden Rules of Debugging

. Understand the requirements

. Make it fail

. Simplify the test case

. Read the right error message

. Check the plug

. Separate facts from interpretation
. Divide and conquer

. Match the tool to the bug

. One change at a time

. Keep an audit trail

. Get a fresh view

. If you didn’t fix it, it ain’t fixed

. Cover your bugfix with a regression test

TOPHAT (PRACTICE) QUESTIONS

T. UNDERSTAND THE REQUIREMENTS

e |sitabug oramisunderstanding ot expected
behavior?

e Requirements will tell you.

2. MAK

T FAIL

e \Write test cases to isolate bug and make it
reproducible.

e This will increase confidence that bug is fixed later.

* These tests will be added to the suite of regression
tests (“does today’s code pass yesterday's tests?”)

3. SIMPLIFY TH

[EST CAS

e Ensure there is nothing extraneous in the test case.

e Keep it simple! Whittle it down until you get at the
essence of the tailure.

4. READ THE RIGHT ERROR MESSAGE

e "Everything that happened after the first thing went
wrong should be eyed with suspicion. The first
oroblem may have left the program in a corrupt state.”

p. 9]

5. CHECK THE PLUG

e Don't overlook the obvious - things like permissions,

file system status, available memory.

11

e "Think of ten common mistakes, and ensure nobody

made them.” [p. 9]

6. SEPARATE FACT FROM FICTION

* "Don't assume!”

e Can you prove what you believe to be true?

DIVIDE AND CONQUER

Beware bugs caused by interactions amongst
components.

Develop a list of suspects (source code, compiler,
environment, libraries, machine, etc)

Each component alone may work correctly, but in
combination bad things happen

Can be especially tricky with multithreaded programs

8. MATCH THE TOOL TO THE BUG

e |fall you have is a hammer ... you'll end up with a very
sore thumb.

e Build a solid toolkit to give you choices.

e Use multiple tools/approaches (e.g. testing and
debugging work better together than either alone)

9. ONE CHANGE AT A TIM

e Be methodical. If you make multiple changes at one
you can't tease apart which change had which eftfect.

e With your list of suspects, document what you predict
the outcome of a change will be.

e Document the changes you make, and the results.

e Did results match predictions?

