
C S E 3 0 6
S O F T W A R E Q U A L I T Y I N P R A C T I C E

Dr. Carl Alphonce
alphonce@buffalo.edu
343 Davis Hall

www.cse.buffalo.edu/faculty/alphonce/SP24/CSE306

L AT E J O I N E R S

• Today is the last day for Add/Drop

• TopHat and AutoLab rosters will reflect add/drop changes
as of Thursday morning

• If you missed your lab session, do the LEX as soon as you
can on your own time: post questions and requests for
assistance in Piazza.

• We will NOT be strict on the deadlines for LEX01 and
LEX02 (to accommodate students registering through end
of add/drop)

A N N O U N C E M E N T S

• Team formation will be finalized by tomorrow.

• if you wish to pick your teammates form your team before
5:00 PM today

• after 5:00 PM today I will assign remaining students to teams

• PRE (the first team project) will be posted on the course
website as soon as team assignments are completed.

• Every team will have a Piazza group useful for intra-team
communication, necessary for team-staff communication.

T E X T, P G 8

1 0 . K E E P A N A U D I T T R A I L

• Keep track of all changes you have made (and what
the result of each change was).

• Use a code repository! This lets you back out changes
that were not productive.

• Audit trail is useful for you, whoever works on this
code in the future, and for documenting your
progress.

1 1 . G E T A F R E S H V I E W

• Ask for someone else to have a look — but not before
having done steps 1 - 10!

• Even just explaining the situation can help you better
understand what is happening.

1 2 . I F Y O U D I D N ’ T F I X I T, I T A I N ’ T
F I X E D

• Intermittent bugs will recur.

• If you make a change to the code and the symptom
goes away, did you really fix it? You must convince
yourself that the fix you applied really did solve the
problem!

1 3 . C O V E R Y O U R B U G F I X W I T H A
R E G R E S S I O N T E S T

• Make sure the bug doesn’t come back! Just because
it worked yesterday doesn't mean it still works today.
This is especially important in team environments
where you are not the only person touching the code.

E S S E N T I A L T O O L S

• compiler (e.g gcc)

• debugger (e.g. gbd)

• memory checker (e.g. memcheck)

• runtime profiler (e.g. gprof)

• automated testing framework (e.g. cunit)

• build tool (e.g. make)

• code repository (e.g. git)

• organization/collaboration tool (e.g. ZenHub)

• pad of paper / whiteboard

C L A S S I F I C AT I O N O F B U G S

• Common bugs (source code, predictable)

• Sporadic bugs (intermittent)

• Heisenbugs (averse to observation)

• race conditions

• memory access violations

• (programmer) optimizations

• Multiple bugs - several must be fixed before program behavior
changes - consider violating rule #9 "one change at a time"

W H Y H E I S E N B U G S ?
T H E U N C E R TA I N T Y P R I N C I P L E . . .

…the uncertainty principle, also known as Heisenberg's
uncertainty principle, is any of a variety of mathematical
inequalities[1] asserting a fundamental limit to the
precision with which certain pairs of physical properties
of a particle, known as complementary variables, such as
position x and momentum p, can be known.

https://en.wikipedia.org/wiki/Uncertainty_principle

https://en.wikipedia.org/wiki/Uncertainty_principle

O B S E R V E R E F F E C T

…the term observer effect refers to changes that the act
of observation will make on a phenomenon being
observed. This is often the result of instruments that, by
necessity, alter the state of what they measure in some
manner.

https://en.wikipedia.org/wiki/Observer_effect_(physics)

D E B U G G I N G T O O L S

• instrument code during compilation

• instrumented code may behave differently than
uninstrumented code

• in other words: the act of using a debugger may mask
a bug, causing its symptoms to disappear, only to
reappear when run without instrumentation

M E M O R Y
O R G A N I Z AT I O N

M E M O R Y O R G A N I Z AT I O N

STATIC

DYNAMIC

Each process (a running program)
has a chunk of memory at its
disposal.

This memory is divided into "static"
memory (allocated/structured before
execution begins) and "dynamic"
memory (allocated while the
program executes.

