
CSE306 Software
Quality in Practice

Dr. Carl Alphonce
alphonce@buffalo.edu

343 Davis Hall

Debugging with gdb

Common compiler options

-std set language standard

-o set output file name

-g debugging

-c compile/assemble do not link

-Wall report "all" warnings

-L library path <— search for library files here

-I include path <- where to find .h files

-l library <— search this library during linking

compiling and running

compile using gcc, with '-o' flag if you want to specify a name
for the resulting executable (other than "a.out")

gcc -o factorial factorial.c main.c

launch program using by running executable:

./factorial 5

without debugger

with debugger
compile using gcc, with '-g' flag to include debugging information
in executable (name of executable is up to you, but adding .debug
is a reminder that debugging information is included).

gcc -g -o factorial.debug factorial.c main.c

launch program using gdb

gdb ./factorial.debug
NB: no program argument
supplied in gdb invocation

basic commands

quit - get out of gdb

help - on-line help system

run (with program arguments)

Run in Emacs
https://emacsdocs.org/docs/emacs/GDB-Graphical-Interface

M-x gdb

(M-x gdb-display-disassembly-buffer)

Toggle between UI modes

C-x C-a for TUI/standard mode toggle

C-x 1 for code only

C-x 2 for code and assembly

TUI mode commands:

https://sourceware.org/gdb/current/onlinedocs/gdb/TUI-Commands.html#TUI-Commands

https://sourceware.org/gdb/current/onlinedocs/gdb/TUI-Commands.html#TUI-Commands

TUI mode not always
available

Not all environments support the TUI
mode

All environments support the standard
command-line mode: learn these
commands

short demo
bt (backtrace)

up / down / frame N

info frame / info args / info locals

break <function> / break <line> / break <bp> if
<expr>

enable / disable

ignore <bp> N

tbreak (a once-only breakpoint)

run / step / continue / next

Inspecting/changing variables

print <var> (= <expr>)

set var <var> = <expr>

print <expr> —> evaluate and print, carrying out
function calls

call <expr> —> evaluate, do not print

returning from a function call

return —> discard frame (and subframes)

return <expr> —> as above, <expr> is returned

finish —> complete execution of this function normally

kill —> terminate execution of the program being debugged

factorial code from lecture

gdb-factorial-exercise

helpful resources

https://www.recurse.com/blog/7-understanding-c-by-learning-
assembly

https://sourceware.org/gdb/current/onlinedocs/gdb/

https://classroom.github.com/a/532WzGPZ
https://www.recurse.com/blog/7-understanding-c-by-learning-assembly
https://www.recurse.com/blog/7-understanding-c-by-learning-assembly
https://sourceware.org/gdb/current/onlinedocs/gdb/

