
CSE306 Software
Quality in Practice

callgrind overview

POST
expectations

Piazza post @367

https://piazza.com/class/lqr7nkpkiyc6fl/post/367

Valgrind
"val-grinned" - the gate to Valhalla

A suite of tools (see http://valgrind.org/info/tools.html)

Memcheck "detects memory-management problems"

Cachegrind "is a cache profiler"

Callgrind "is an extension to Cachegrind. It provides all the information
that Cachegrind does, plus extra information about callgraphs."

Massif "is a heap profiler"

Helgrind "is a thread debugger which finds data races in multithreaded
programs"

DRD "is a tool for detecting errors in multithreaded C and C++
programs"

http://valgrind.org/info/tools.html

callgrind
valgrind --tool=callgrind [opts] prog [opts]

[opts] callgrind options

[opts] program options

callgrind_annotate
Helps to make sense of callgrind data.

callgrind_annotate --inclusive=yes --
tree=both --auto=yes callgrind.out.<PID>

https://web.stanford.edu/class/archive/cs/
cs107/cs107.1196/resources/callgrind

https://web.stanford.edu/class/archive/cs/cs107/cs107.1196/resources/callgrind
https://web.stanford.edu/class/archive/cs/cs107/cs107.1196/resources/callgrind

To redirect output to a file

You can redirect the output of a command
to a file using '>'. For example, to redirect
the output of 'ls' to a file named 'abc':

ls > abc

Note: '>' creates the file if it does not
already exist, and overwrites it if it does
(without warning).

EXERCISE
Work through the gprof exercise from last
Monday (April 8) but now using callgrind
instead (or in addition to).

https://classroom.github.com/a/1D7Ht9-V

NOTE
During this in-class exercise several students and I did not get annotated source

code included in the callgrind_annotate output, though it should have been
present. I am as yet uncertain as to why. However, the code for LEX22 does

reliably produce the annotated source code, so there is some hope that LEX22 will
work as intended.

https://classroom.github.com/a/1D7Ht9-V

