
 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

CSE306
Software Quality in Practice

Dr. Carl Alphonce
alphonce@buffalo.edu

343 Davis Hall

End-of-Semester overview
M T W Th

Callgrind LEX22
Expectations:

LEX23/24
LPR
POST

LEX23
LPR practice

part 1

Process review
(interactive)

TBD suggestions

LEX24
LPR practice

part 2
TBD

LPR
part 1 of 2

LPR Q&A
LEX make-up with
prior approval only

Tools in other
languages

(interactive)

LPR
part 2 of 2

no class
LEX make-up with
prior approval only

4/15 4/16 4/17 4/18

4/22 4/23 4/24 4/25

4/29 4/30 5/01 5/02

5/06 5/07 5/08 5/09

TODAY

 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Important instructions for the
Lab Practical exam (LPR)

Timeframe
You may work on this part of the lab practical exam only for two hours and only during your
scheduled lab time.

Please note: if you do not finish all the coding during part 1 (a.k.a LPR1), don't worry - you
can finish up during part 2 (a.k.a. LPR2), though you may not modify your code/repo between
LPR1 and LPR2. We give some implementation hints (see below). Remember to show proper
use of tools and techniques.

Please note: In LPR2 you will receive buggy code so you can use gdb to track down a
segfault and valgrind/memcheck to document and fix memory leaks in case you did not find
opportunities to showcase that in LPR1.

Resources
You may use any prior work you have done for this course (any earlier LEXes, PRE, EXP01,
EXP02, POST), any tool documentation, etc. You may ask TAs (but not other students)
questions during the lab practical, though they cannot answer all questions: this is an exam
after all. TAs will be available during your regular lab time. Between part 1 and part 2 you
should may ask questions on Piazza (though (again) we cannot answer all questions: this is an
exam after all).

 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

In preparation for the last few assignments
(LEX23 & LEX24 (which are practice for the
LPR), the LPR itself, and POST) it is important
that everyone is clear on what sort of evidence
we are looking when assessing your work.

These are the things for which we are expecting
to find evidence of use:

 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

1. git (on GitHub)

- For full credit we expect regular commits, appropriate
branching (e.g. feature branches, bug fix branches), and
meaningful/descriptive commit comments.

- For full credit all branches must be pushed (use -u on
first push of branch only): git push -u origin HEAD

- For full credit the commits must be of sufficient
granularity to show evidence of following sound
development/debugging practices (as discussed throughout
the course).

- For full credit the commit messages must be descriptive
enough to show evidence of following sound development/
debugging practices (as discussed throughout the course).

 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

2. Planning tool (Trello) - use for
planning rather than collaboration in
LPR since this is an individual activity

- For full credit we expect that
meaningful (GitHub) issues are created.

- For full credit we expect that Trello
cards are linked to GitHub issues.

 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

3. Build tools (make)

- The makefile itself will be used as evidence.
The makefile must be functional for compiling
the project code. If you use your 'makeMake'
script the script itself must be committed to the
repo as well.

- The 'makeMake' script may not create targets
for all the tools you wish to use (e.g. 'gprof' and
the 'valgrind' tools. You can either add this into
your script or hand-edit the resulting makefile.

 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

4. TDD/opaque testing (Criterion)

- We expect there to be a git branch for writing the tests,
committed and pushed.

- We expect there to be a sequence of commits showing the
opaque tests being written (including the stubbed out
application code to allow the tests to compile/run).

- We expect there to be be a commit that includes the output
from Criterion (e.g. in a text file) that shows the tests
(mostly) failing due to functionality not being built yet.

- We expect there to be git branches for feature development
with commits that show opaque tests failing prior to feature
implementation, and opaque tests passing after feature
implementation.

 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

5. Software testing - transparent testing (Criterion); after a
feature is developed and passes its opaque tests:

- We expect there to be commits on a transparent testing
branch that show the output of a coverage tool (section 6,
'gcov') - e.g. the 'gcov' output committed to a text file.

- If coverage is not 100% additional tests must be written to
achieve (close to) 100% coverage. Test development must be
shown in a separate commit after the initial 'gcov' run.

- If the opaque tests you develop naturally have 100% coverage,
try to engineer a feature development cycle for which the
opaque tests won't have 100% coverage, so you can show
(artificially) the process of improving the test coverage.

- We expect there to be a commit after the transparent tests are
written that show improved code coverage - e.g. the 'gcov'
output committed to a text file.

 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

6. Code Coverage ('gcov')

- This is tied to section 5. Show
coverage tool output before and after
writing transparent tests, in separate
commits, as coverage increases.

 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

7. Compiler

- Provide evidence that the appropriate flags were
passed to the compiler (the makefile can provide
evidence).

- Provide evidence that compiler errors and
compiler warnings were addressed on an ongoing
basis (show compiler output in a text file, commit
and push file, resolve issues, show compiler output in
a text file, commit and push file again.)

- You should aim for clean compiles, with no errors
or warnings using the -Wall flag.

 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

8. Performance tools (gprof, valgrind/
callgrind)

- Capture output from one or both of these
profiling tools in a text file. Explain output
(indicate where hotspots are) - this can be
done in a commit message or the text file. If
possible show code changes and then
performance improvement. If this doesn't
happen naturally you can engineer in poor
performance and then show improvement by
fixing.

 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

9. Debugging ('gdb')

- We expect you to show adherence to process and
productive use of gdb.

- When there's a bug, create a bug fix branch.

- Write tests that fail due to the bug (commit tests,
show output of running tests in commit).

- Run 'gdb' to track down source of bug. Explain
what you think the problem is, how you're going to
investigate it, gather data from 'gdb' to support or
refute your hypothesis, preserve data to file, commit
to repo.

- Fix bug - show tests passing. Commit evidence.

 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

10. Memory leaks (valgrind/memcheck)

- We expect you to verify presence/absence of
memory problems with the 'memcheck' tool (from the
'valgrind' suite). Preserve output to file. Commit.

- We expect you to address memory issues, and show
improvement (preserve 'memcheck' output to file.
Commit.)

- If no memory issues are present you can (as in
other cases) engineer a problem to demonstrate that
you can use the tool to detect the problem, fix the
problem, and demonstrate that it is resolved.

 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

We recommend you look over the rubric in
UBLearns prior to starting work.

Keep in mind too that you have limited time to do
this. Be strategic: have a game plan going in,
making sure you hit each of these items. You are
not expected to complete all the requirements, or
necessarily fix all bugs, or plug all memory leaks.

Use the code you write to demonstrate that you
know when/how to use the tools effectively, while
demonstrating adherence to the sound
development/debugging processes we discussed in
class.

