
CSE443
Compilers

Dr. Carl Alphonce
alphonce@buffalo.edu

343 Davis Hall
OH: TW 1:15-2:45

www.cse.buffalo. edu/faculty/alphonce/SP24/CSE443

http://www.cse.buffalo.%20edu/faculty/alphonce/SP24/CSE443

Roadmap

Syllabus: posted on website

Course overview

Course structure and assessment

Capstone status of course

BUILD
A

COMPILER!

What?

Why?
Deeper understanding of languages

Become a better programmer

Learn how to build tools

Build special-purpose languages (DSLs)

Theory meets practice

High-level meets low-level

How?

That's the rest of the course!

Assessment plan
Project (50%)

design and build a compiler

team-based

Final Exam (20%)
during final exam period

sample questions give out the last week of classes

Teamwork (20%)
four sprints

each team will have a project manager (PM)

Presentation (10%)
each team will present/demo their compiler

Teams and PM Meetings
Form teams as soon as possible, preferably no later than
Tuesday next week (after add/drop)

Teams must be of size 3 or 4, with all members in the
same recitation (these will be the PM meeting times).

A1 has 12 students: three teams of 4

A2 has 9 students: three teams of 3

One member of each team must make a private post in
Piazza with the UBIT and GitHub username of each person
on their team.

All code must be maintained in private git repo hosted on
GitHub. I will set these up via GitHub Classroom; don't set
repos up on your own before then.

Goal: build a
compiler

source program

executable

Phases of
a

compiler

Figure 1.6,
page 5 of text

source program

executable

Setting the stage

Deep understanding - ex 1

identifier

vs

name

vs

variable

name

y.x

identifier

x

variable

location
in

memory

refers to

static
(in program text)

dynamic
(at runtime)

void foo(void) {
 int x = 0;
 printf(x);
}

void bar(void) {
 double x = 3.8;
 printf(x);
}

Deep understanding - ex 1

struct Pair {
 int x;
 int y;
};

void bar(void) {
 struct Pair r, s;
 /* ... */
}

Deep understanding - ex 1

int f(int x) {
 if (x == 0) { return 1; }
 else { return x * f(x-1); }
}

Deep understanding - ex 1

identifier

x

variable

identifier in distinct scopes
identifier in distinct record instances

identifier in recursive function invocations

CODE
RUNTIME

variable

variable

variable

order of evaluation

Does source code completely
determine order of evaluation/

execution at machine language level?

Deep understanding - ex 2

a + b * c

Deep understanding - ex 2

What is the order of
evaluation?

a + b * c

Deep understanding - ex 2

What is the order of
evaluation of the expressions?

a + b * c

Deep understanding - ex 2

How many expressions are
there?

Deep understanding - ex 2

How many squares are there?

f() + g() * h()

Deep understanding - ex 2

What is the order of
evaluation?

