CSE443
 Compilers

Dr. Carl Alphonce alphonceebuffalo.edu 343 Davis Hall

Anhouhcemencs

- Project document posted on website
- Team formation
- We can lake a few minutes bo do il now
- Make private Piazza post with UBIT username and corresponding GitHub username.

Phases of
a compiler

Figure 1.6,

 page s of text

Languages

Formally, a grammar $G=(N, \Sigma, P, S)$ is defined by 4 items:

1. N, a set of non-terminals
$N=\{x, y\}$
2. Σ, a set of terminals (alphabet)
$\Sigma=\{a, b\}<-$ for example
$N \cap \Sigma=\{ \}<-$ general grammar constraints
3. P, a set of productions of the form (right linear)
$X \rightarrow a y$
$y \rightarrow b x$
$y \rightarrow a \quad<-a$ right linear grammar describing a regular language
$X \rightarrow \varepsilon$
$X \in N, Y \in N, a \in \Sigma, \varepsilon$ denotes the emply string
4. S, a start symbol

$$
\begin{aligned}
& S=Y \\
& S \in N
\end{aligned}
$$

Languages
 grammars

[...] a regular grammar is a grammar that is right-regular or left-regular:

- all production rules have at most one non-terminal symbol
- that symbol is either always at the end or always at the start of the rule's right hand side.
htlps://en.wikipedia.org/wiki/Regular_grammar

Languages $\$$ grammars

Given a siring $a A$, where $a \in \sum^{*}$ and $A \in N$, and a production
$A \rightarrow \beta \in P$
we write $a A \Rightarrow a \beta$ co indicate chat aA derives ar in one step.
$\Rightarrow k$ and $\Rightarrow *$ can be used co indicate k or arbitrarily many derivation skeps, respectively.

Languages \& grammars

$\mathcal{L}(G)$ is the set of all strings derivable from G starting with the start symbol; i.e. it denotes the language of G.

Languages \& grammars

Given a grammar G the Language it generates, $\mathcal{L}(C)$, is unique.

Given a language L there are many grammars H such that $\mathcal{L}(H)=L$.

Languages \& grammars
Think about what this means for us: there is no single "correct" grammar for a language.

In fact, grammars for users vs, tool writers vs. compiler writers can all be different.

Given a language L there are many grammars H such that $\mathcal{L}(H)=L$.

Lexical Analysis

- Lexical structure described by regular grammar
- Deterministic finite state machine performs analysis

SOURCE: https://openi.nlm.nih.gov/detailedresult.php?ing=PMC3367694_rstb20120103-g2\&req=4
AUTHORS: Fitch WT, Friederici AD - Philos. Trans. R. Soc. Lond., B, Biol. Sci. (2012)

How is a regular language defined?

- Recall that a language is a set of strings. This set can be finite or infinite.
- The possible regular languages over a given alphabet are defined inductively - construction given on next two slides.

LANGUAGE operations
base cases

- $\{\varepsilon\}$ is a regular language
- $\forall a \in \Sigma,\{a\}$ is a regular language
ε is the emply string

LANGUAGE operations
If L and M are regular, so are:

- $L u M=\{s \mid s \in L$ or $s \in M\}$ union
- $L M=\{s t \mid s \in L$ and $t \in M\}$ concatenation
- $L^{*}=U_{i=0, \infty} L^{i}$ Kleene closure
- No other languages are regular
L^{i} is L concatenated with itself i times: $L^{\circ}=\{\varepsilon\}$, by definition

$$
L^{1}=L
$$

$L^{2}=L L$
$L^{3}=L L L$, etc.
L* is the union of all these sets!

Example of L^{*}
Suppose L is $\{a, b b\}$
$L^{\circ}=\{\varepsilon\}$, by definition

$$
L^{1}=L=\{a, b b\}
$$

$L^{2}=L L=\{a a, a b b, b b a, b b b b\}$
$L^{3}=L L L=\{a a a, a a b b, a b b a, a b b b b$, bbaa, bbabb, bbbba, bbbbbb\}

$$
L^{4}=
$$

...and so so...
$L^{*}=U_{i=0, \infty} L^{i}=\{\varepsilon, a, b b, a a, a b b, b b a, b b b b, a a a$, aabb, abba, abbbb, bbaa, bbbba, bbaa, bbabb, bbbba, bbbbbb, abbbb, bbabb, ... $\}$

Some regular languages over $\Sigma=\{0,1\}$
The base cases yield these regular languages:

$$
\{\varepsilon\},\{0\},\{1\}
$$

The inductive cases yield many more. Some are:

$$
\begin{aligned}
& \{0,1\},\{01\},\{10\},\{01,10\},\{0,01\},\{1,01\},\{0, \\
& 10\},\{1,10\},\{0,1,01\},\{0,1,10\},\{0,01,10\}, \\
& \{1,01,10\},\{00\},\{000\},\{0000\},\{11\},\{111\}, \\
& \{1111\}, \text { and many many more. }
\end{aligned}
$$

Can you demonstrate how each of these is regular?

Why use grammars?

- Recall that a language is a possibly infinite set of strings.
- A grammar gives us a way lo describe, using finite means, an infinite set.
- Regular expressions are equivalent lo regular grammars in expressive power: both regular grammars and regular expressions describe regular languages.
- If X is a regular expression, $\mathcal{L}(X)$ denotes the set of strings recognized by X.

Inductive definition of REGular EXpressions (regex) over a given alphabet Σ
ε is a regex

$$
\mathcal{L}(\varepsilon)=\{\varepsilon\}
$$

For each $a \in \Sigma$, a is a regex

$$
\mathcal{L}(a)=\{a\}
$$

Regular expressions (regex) Inductive definition

Assume r and s are regexes.
$r \mid s$ is a regex denoting $\mathcal{L}(r) \cup \mathcal{L}(s)$
$r s$ is a regex denoting $\mathcal{L}(r) \mathcal{L}(s)$
r^{*} is a regex denoting $(\mathcal{L}(r))^{*}$
(r) is a regex denoting $\mathcal{L}(r)$

Precedence: Klbene closure > Concatenation > union
Associalivily: all left-associakive (minimize use of parentheses: $(r \mid s)|t=r| s \mid t)$

Algebraic laws

Assume r and s are regexes.

$$
\begin{array}{ll}
\text { Commutativity } r|s=s| r \\
\text { Associativity } r|(s \mid c)=(r \mid s)| k \text { and } r(s e)=(r s) k \\
\text { DistRIbutivity } & r(s \mid E)=r s \mid r k \text { and }(s \mid E) r=s r \mid k r \\
\text { IDENTITY } & \varepsilon r=r \varepsilon=r \\
\text { IDEMPOTENGY } & r^{* *}=r^{*}
\end{array}
$$

We can describe a regular language using a regular expression

Why do we care?

- We will be using a tool called FLEX to construct a lexical analyzer (a lexer) for the programming language we're constructing a compiler for.
- If we give FLEX a regular expression describing the lexical structure of our language, FLEX will produce a C program which acts as our lexer.
- The next step for us to understand (at a high level) how FLEX converts a regex to a C program.

A regular expression can be implemented using a finite state machine.

Finite state machines can be deterministic or non-deterministic:

DEA
deterministic finite automaton
MFA
non-deterministic finite automaton

Process of building lexical analyzer

1) spell out the language

Language

Process of building lexical analyzer

2) formulate a regular expression

Process of building Lexical analyzer

3) build an NFA

Process of building Lexical analyzer

4) transform NFA to DFA

Process of building lexical analyzer
5) transform DFA to a minimal DFA

Process of building lexical analyzer

6) The minimal DFA is our lexical analyzer
character stream
token stream

Step 1: Construct NFA from regex

Nondeterministic Finite Aukomaka (NFA)

- A finite set of states S
- An alphabet $\Sigma, \varepsilon \notin \Sigma$
- $\delta \subseteq S X(\Sigma \cup\{\varepsilon\}) \times \mathcal{P}(S)$ (transition function)
- So $\in S$ (a single stark skate)
- F $\subseteq S$ (a set of final or accepting states)

Deterministic Finite Aulomala (DFA)

- A finite set of states S
- An alphabet $\Sigma, \varepsilon \notin \Sigma$
- $\delta \subseteq S X \sum X S$ (transition function)
- So $\in S$ (a single stark skate)
- F $\subseteq S$ (a set of final or accepting states)

NFA vs DFA transikion function

- $\delta \subseteq S \times\left(\begin{array}{l|l}(\Sigma \cup\{\varepsilon\}) & \times \\ \hline \mathcal{P}(S) \\ -\delta \subseteq S & \Sigma\end{array}\right]$
no e-transitions no multiple Eransilions

A slate is a circle wibh ils skabe number wrikten inside.

Initial skate has an arrow from nowhere pointing in. Slate O is often the initial state.

A final (accepting) state is drawn with a double circle.
(1)

Arrows are labeled with 8 ...

\ldots or $a \in \Sigma_{\text {. }}$

for each $a \in \Sigma$

Regex \rightarrow NFA

for each $a \in \Sigma$

Regex \rightarrow NFA

St

Simple example

static

Simple example

static

Simple example

static struct

Step 2:

 Construck DFA equivalent to NFA

Next Eime!

Step 3:
 DFA minimization

Next Eime!

