CSE 443
Compilers

Dr. Carl Alphonce
alphonce@buffalo.edu
343 Davis Hall
Announcements

- Project document posted on website

- Team formation
 - We can take a few minutes to do it now
 - Make private Piazza post with UBIT username and corresponding GitHub username.
Phases of a compiler

Lexical structure

Figure 1.6, page 5 of text
Formally, a grammar $G = (N, \Sigma, P, S)$ is defined by 4 items:

1. N, a set of non-terminals
 - $N = \{ X, Y \}$

2. Σ, a set of terminals (alphabet)
 - $\Sigma = \{ a, b \}$ ← for example
 - $N \cap \Sigma = \{\} \leftarrow$ general grammar constraints

3. P, a set of productions of the form (right linear)
 - $X \rightarrow aY$
 - $Y \rightarrow bX$
 - $Y \rightarrow a$ ← a right linear grammar describing a regular language
 - $X \rightarrow \varepsilon$
 - $X \in N$, $Y \in N$, $a \in \Sigma$, ε denotes the empty string

4. S, a start symbol
 - $S = Y$
 - $S \in N$
languages & grammars

[...] a regular grammar is a grammar that is right-regular or left-regular:

- all production rules have at most one non-terminal symbol
- that symbol is either always at the end or always at the start of the rule's right hand side.

https://en.wikipedia.org/wiki/Regular_grammar
languages & grammars

Given a string αA, where $\alpha \in \Sigma^*$ and $A \in N$, and a production $A \rightarrow \beta \in P$ we write $\alpha A \Rightarrow \alpha \beta$ to indicate that αA derives $\alpha \beta$ in one step.

\Rightarrow^k and \Rightarrow^* can be used to indicate k or arbitrarily many derivation steps, respectively.
$L(G)$ is the set of all strings derivable from G starting with the start symbol; i.e. it denotes the language of G.
languages & grammars

Given a grammar G the language it generates, $\mathcal{L}(G)$, is unique.

Given a language L there are many grammars H such that $\mathcal{L}(H) = L$.
Given a grammar G the language it generates, $\mathcal{L}(G)$, is unique. Given a language L there are many grammars H such that $\mathcal{L}(H) = L$.

Think about what this means for us: there is no single "correct" grammar for a language.

In fact, grammars for users vs. tool writers vs. compiler writers can all be different.

Given a language L there are many grammars H such that $\mathcal{L}(H) = L$.

languages & grammars
Lexical Analysis

- Lexical structure described by regular grammar
- Deterministic finite state machine performs analysis
How is a regular language defined?

- Recall that a language is a set of strings. This set can be finite or infinite.

- The possible regular languages over a given alphabet are defined inductively - construction given on next two slides.
LANGUAGE operations

base cases

- \{ \varepsilon \} is a regular language
- \forall a \in \Sigma, \{ a \} is a regular language

\varepsilon \text{ is the empty string}
If L and M are regular, so are:

- $L \cup M = \{ s \mid s \in L \text{ or } s \in M \}$ \textbf{UNION}
- $LM = \{ st \mid s \in L \text{ and } t \in M \}$ \textbf{CONCATENATION}
- $L^* = \bigcup_{i=0,\infty} L^i$ \textbf{KLEENE CLOSURE}

No other languages are regular

L^i is L concatenated with itself i times:

- $L^0 = \{ \epsilon \}$, by definition
- $L^1 = L$
- $L^2 = LL$
- $L^3 = LLL$, etc.
- L^* is the union of all these sets!
Example of L^*

Suppose L is $\{a, bb\}$

$L^0 = \{\varepsilon\}$, by definition

$L^1 = L = \{a, bb\}$

$L^2 = LL = \{aa, abb, bba, bbbb\}$

$L^3 = LLL = \{aaa, aabb, abba, abbbb,
 bbaa, bbabb, bbbba, bbbbbbb\}$

$L^4 = $

...and so so...

$L^* = \bigcup_{i=0,\infty} L^i = \{\varepsilon, a, bb, aa, abb, bba, bbbb, aaa,
 aabb, abba, abbbb, bbaa, bbbba, bbbaa, bbabb,
 bbbba, bbbbbbb, abbbb, bbabb, ... \}$
Some regular languages over $\Sigma = \{0,1\}$

The base cases yield these regular languages:

$\{\varepsilon\}$, $\{0\}$, $\{1\}$

The inductive cases yield many more. Some are:

$\{0, 1\}$, $\{01\}$, $\{10\}$, $\{01, 10\}$, $\{0, 01\}$, $\{1, 01\}$, $\{0, 10\}$, $\{1, 10\}$, $\{0, 1, 01\}$, $\{0, 1, 10\}$, $\{0, 01, 10\}$, $\{1, 01, 10\}$, $\{00\}$, $\{000\}$, $\{0000\}$, $\{11\}$, $\{111\}$, $\{1111\}$, and many many more.

Can you demonstrate how each of these is regular?
Why use grammars?

- Recall that a language is a possibly infinite set of strings.
- A grammar gives us a way to describe, using finite means, an infinite set.
- Regular expressions are equivalent to regular grammars in expressive power: both regular grammars and regular expressions describe regular languages.
- If X is a regular expression, $\mathcal{L}(X)$ denotes the set of strings recognized by X.
Inductive definition of REGular EXpressions (regex) over a given alphabet Σ:

- ε is a regex

 $L(\varepsilon) = \{ \varepsilon \}$

- For each $a \in \Sigma$, a is a regex

 $L(a) = \{ a \}$
Regular expressions (regex)
Inductive definition

Assume r and s are regexes.

$r|s$ is a regex denoting $\mathcal{L}(r) \cup \mathcal{L}(s)$
rs is a regex denoting $\mathcal{L}(r) \mathcal{L}(s)$
r^* is a regex denoting $(\mathcal{L}(r))^*$
(r) is a regex denoting $\mathcal{L}(r)$

Precedence: Kleene closure $>$ concatenation $>$ union

Associativity: all left-associative (minimize use of parentheses: $(r|s)|t = r|s|t$)
Algebraic Laws

Assume r and s are regexes.

Commutativity \[r|s = s|r \]

Associativity \[r|(s|t) = (r|s)|t \text{ and } r(st) = (rs)t \]

Distributivity \[r(s|t) = rs|rt \text{ and } (s|t)r = sr|tr \]

Identity \[\varepsilon r = r \varepsilon = r \]

Idempotency \[r^{**} = r^* \]
We can describe a regular language using a regular expression.
Why do we care?

- We will be using a tool called FLEX to construct a lexical analyzer (a lexer) for the programming language we're constructing a compiler for.
- If we give FLEX a regular expression describing the lexical structure of our language, FLEX will produce a C program which acts as our lexer.
- The next step for us to understand (at a high level) how FLEX converts a regex to a C program.
A regular expression can be implemented using a finite state machine.

Finite state machines can be deterministic or non-deterministic:

- **DFA**
 deterministic finite automaton

- **NFA**
 non-deterministic finite automaton
Process of building lexical analyzer

1) spell out the language
Process of building lexical analyzer

2) formulate a regular expression
Process of building lexical analyzer

3) build an NFA

language → regex → NFA
Process of building lexical analyzer

4) transform NFA to DFA
Process of building lexical analyzer

5) transform DFA to a minimal DFA
Process of building lexical analyzer

5) The minimal DFA is our lexical analyzer

language → regex → NFA → DFA

FLEX generates a C program which implements the minimized DFA
Step 1: Construct NFA from regex
Nondeterministic Finite Automata (NFA)

- A finite set of states S
- An alphabet Σ, $\varepsilon \notin \Sigma$
- $\delta \subseteq S \times (\Sigma \cup \{\varepsilon\}) \times P(S)$ (transition function)
- $s_0 \in S$ (a single start state)
- $F \subseteq S$ (a set of final or accepting states)
Deterministic Finite Automata (DFA)

- A finite set of states S
- An alphabet Σ, $\varepsilon \notin \Sigma$
- $\delta \subseteq S \times \Sigma \times S$ (transition function)
- $s_0 \in S$ (a single start state)
- $F \subseteq S$ (a set of final or accepting states)
NFA vs DFA

transition function

\[\delta \subseteq S \times (\Sigma \cup \{\varepsilon\}) \times P(S) \]

no \(\varepsilon \)-transitions

no multiple transitions
A state is a circle with its state number written inside.
Initial state has an arrow from nowhere pointing in. State 0 is often the initial state.
A final (accepting) state is drawn with a double circle.
Arrows are labeled with ε ...

... or $a \in \Sigma$.

for each $a \in \Sigma$
Regex \rightarrow NFA

For each $a \in \Sigma$
Regex \rightarrow NFA

S^*

S^*
Simple example

static
Simple example

static

0 1 2 3 4 5 6
Step 2: Construct DFA equivalent to NFA
Step 3: DFA minimization

Next time!