CSE443
 Compilers

Dr. Carl Alphonce alphonceebuffalo.edu 343 Davis Hall

Announcemencs

- Initial attendance sheet
- How did PM meekings go yeskerday?

Phases of
a compiler

Process of building lexical analyzer

6) The minimal DFA is our lexical analyzer
character stream

token stream
lexical analyzer

Focus Last kime

focus today

$(a \mid b) \times a b b$

first we construct an NFA
from this regular expression

$$
\begin{aligned}
& \text { (a|b)*abb } \\
& \stackrel{a}{\rightarrow}
\end{aligned}
$$

$$
\begin{aligned}
& \quad(a \mid b) \times a b b \\
& \stackrel{a}{\rightarrow} \\
& \stackrel{b}{0}
\end{aligned}
$$

$$
(a \mid b) \times a b b
$$

Operations

- ε-closur eft) is the set of states reachable from state t using only ε-transitions.
- ε-closure(T) is the set of states reachable from any state $t \in T$ using only ε transitions.
- move (T, a) is the set of states reachable from any state $t \in T$ following a transition on symbol $a \in \Sigma$.

NFA \rightarrow DFA algorithm
(set of states construction - page 1.53 of text)

- INPUT: An NFA $N=(S, \Sigma, \delta$, So, $F)$
- OUTPUT: A DEA $D=\left(S^{\prime}, \Sigma, \delta^{\prime}\right.$, so', $\left.F^{\prime}\right)$ such that $\mathscr{L}(D)=\mathscr{L}(N)$
- ALGORITHM:

Compute so ${ }^{\prime}=8$-closure(so), an unmarked set of states Set $S^{\prime}=\left\{\right.$ so $\left.0^{\prime}\right\}$
while there is an unmarked $T \in S^{\prime}$
mark T
for each symbol $a \in \Sigma$
Let $U=8-\operatorname{closure}(\operatorname{move}(T, a))$
if $U \notin S^{\prime}$, add unmarked U bo S^{\prime}
add transition: $\delta^{\prime}(T, a)=U$
F^{\prime} is the subset of S^{\prime} all of whose members contain a state in F.

NFA \rightarrow DFA algorithm

(set of states construction - page 153 of text)

$S_{0^{\prime}}=\{A=\{0,1,2,4,7\}\}$
Pick an unmarked set from So°, A, mark it, and $\forall x \in \Sigma$ let $U=\varepsilon$-closure $($ move (A, x)), if $U \notin S^{\prime}$, add unmarked U to S^{\prime} and add transition: $\delta^{\prime}(A, x)=U$
$S_{1}{ }^{\prime}=\left\{A^{\prime}, B=\{1,2,3,4,6,7,8\}, C=\{1,2,4,5,6,7\}\right\}$
$\delta^{\prime}(A, a)=B$
$\delta^{\prime \prime}(A, b)=C$
Pick an unmarked set from S_{1}^{\prime}, B, mark it, and $\forall x \in \Sigma$ let $U=8$-closure $($ move (B, x)),
if $U \notin S^{\prime}$, add unmarked U to S^{\prime} and add transition: $\delta^{\prime \prime}(B, X)=U$
$S_{2^{\prime}}=\left\{A^{\prime}, B^{\prime}, C, D=\{1,2,4,5,6,7,9\}\right\}$
$\delta^{\prime}(B, a)=B$
$\delta^{\prime \prime}(B, b)=D$
Pick an unmarked set from S_{2}, C, mark it, and $\forall x \in \Sigma$ let $U=8$-closure $($ move (C, x)), if $U \notin S^{\prime}$, add unmarked U to S^{\prime} and add transition: $\delta^{\prime}(C, x)=U$

```
S S' ={AV,BV,CV,D }
\delta'(C,a)=B
\delta'(c,b)=c
```


NFA \rightarrow DFA algorithm
 (set of states construction - page 153 of text)

Pick an unmarked set from $S_{3}{ }^{\prime}, D$, mark it, and $\forall x \in \Sigma$ let $U=\varepsilon$-closure $($ move (D, x)), if $U \notin S^{\prime}$, add unmarked U to S^{\prime} and add transition: $\delta^{\prime}(D, x)=U$
$S_{4}{ }^{\prime}=\left\{A^{V}, B^{V}, C v, D^{v}, E=\{1,2,4,5,6,7,10\}\right\}$
$\delta^{\prime}(D, a)=B$
$\delta^{\prime}(D, b)=E$

Pick an unmarked set from S_{4}^{\prime}, E, mark it, and $\forall a \in \Sigma$ let $U=\varepsilon$-closure (move (E, a)), if $U \notin S^{\prime}$, add unmarked U to S^{\prime} and add transition: $\delta^{\prime \prime}(E, a)=U$
$S_{s^{\prime}}=\left\{A^{V}, B^{V}, C V, D^{\prime}, E^{v}\right\}$
$\delta^{\prime}(E, a)=B$
$\delta^{\prime}(E, b)=C$

Since there are no unmarked sets in $5_{s^{\prime}}$ the algorithm has reached a fixed point. STOP.
F^{\prime} is the subset of S^{\prime} all of whose members contain a state in $F:\{E\}$

The original NFA

The resulking DFA
$D F A=\left(\{A, B, C, D, E\},\{a, b\}, A, \delta^{\prime},\{E\}\right)$, where

$$
\begin{aligned}
& \delta^{\prime}(A, a)=B \\
& \delta^{\prime}(A, b)=C \\
& \delta^{\prime}(B, a)=B \\
& \delta^{\prime}(B, b)=D \\
& \delta^{\prime}(C, a)=B \\
& \delta^{\prime}(C, b)=C \\
& \delta^{\prime}(D, a)=B \\
& \delta^{\prime}(D, b)=E \\
& \delta^{\prime}(E, a)=B \\
& \delta^{\prime}(E, b)=C
\end{aligned}
$$

Process of building lexical analyzer

6) The minimal DFA is our lexical analyzer
character stream

token stream
lexical analyzer

focus above:
 NFA to DFA conversion

next scep:
 DFA minimizacion

NFA for $(a \mid b) * a b b$

DFA for $(a \mid b) * a b b$

Minimization Algorithm

DEA \rightarrow minimal DFA algorithm

- INPUT: An DFA D $=(S, \Sigma, \delta, S o, F)$
- OUTPUT: A DFA $D^{\prime}=\left(S^{\prime}, \Sigma, \delta^{\prime}\right.$, so, F') such that
- S^{\prime} is as small as possible, and
- $\ell(D)=\ell\left(D^{\prime}\right)$

- ALGORITHM:

1. Let $\pi=\{F, S-F\}$
2. Let $\pi^{\prime}=\pi$. For every group G of π :
partition G into subgroups such that two states s and t are in the same subgroup iff for all input symbols a, states s and t have transitions on a to states in the same group of π
Replace G in π^{\prime} by the set of all subgrops formed
3. if $\pi^{\prime}=\pi$ let $\pi^{\prime \prime}=\pi$, otherwise set $\pi=\pi^{\prime}$ and repeat 2 .
4. Choose one state in each group of $\pi^{\prime \prime}$ as a representative for that group.
a) The start state of D^{\prime} is the representative of the group containing the start state of D
b) The accepting states of D^{\prime} are the representatives of those groups that contain an accepting state of D
c) Adjust transitions from representatives to representatives.

ORIGINAL DFA

$$
\begin{aligned}
& D=(S, \Sigma, S 0, \delta, F) \\
& S=\{A, B, C, D, E\} \\
& \Sigma=\{a, b\} \\
& S 0=A \\
& \delta=\{(A, a) \rightarrow B,(A, b) \rightarrow C, \\
& (B, a) \rightarrow>,(B, b) \rightarrow D, \\
& (C, a)->B,(C, b) \rightarrow C, \\
& (D, a) \rightarrow>B,(D, b) \rightarrow E, \\
& (E, a) \rightarrow B,(E, b) \rightarrow C\} \\
& F=\{E\}
\end{aligned}
$$

Finding the minimal set of distinct sets of states

$\Pi_{0}=\{F, S-F\}=\{\{E\},\{A, B, C, D\}\}$
Pick a non-singleton set $X=\{A, B, C, D\}$ from Π_{0} and check behavior of states on all transitions on symbols in \sum (are they to states in X or to other groups in the partition?)
$(A, a) \rightarrow B,(B, a) \rightarrow B,(C, a) \rightarrow B,(D, a) \rightarrow B$
$(A, b) \rightarrow C,(B, b) \rightarrow D,(C, b) \rightarrow C,(D, b) \rightarrow E$
D behaves differently, so put it in its own partition.

Finding the minimal set of distinct sets of stakes

$\boldsymbol{T}_{1}=\{\{E\},\{A, B, C\},\{D\}\}$
Pick a non-singleton set $X=\{A, B, C\}$ from Π_{1} and check behavior of states on all transitions on symbols in \sum (are they to states in X or to other groups in the partition?)
$(A, a) \rightarrow B,(B, a) \rightarrow B,(C, a) \rightarrow B$
$(A, b) \rightarrow C,(B, b) \rightarrow D,(C, b) \rightarrow C$
B behaves differently, so put it in its own partition.

Finding the minimal set of diskinct sels of skates

$\boldsymbol{\pi}_{2}=\{\{E\},\{A, C\},\{B\},\{D\}\}$
Pick a non-singleton set $X=\{A, C\}$ from $\boldsymbol{\Pi}_{2}$ and check behavior of states on all transitions on symbols in Σ (are they to states in X or to other groups in the partition?)
$(A, a)->B,(C, a)->B$
$(A, b) \rightarrow C,(C, b) \rightarrow C$
A and C both transition outside the group on symbol a, to the same group (the one containing B). Therefore A and C are indistinguishable in their behaviors, so do not split this group.

Finding the minimal set of distinct sets of states

$\boldsymbol{\Pi}_{s}=\{\{E\},\{A, C\},\{B\},\{D\}\}=\boldsymbol{\pi}_{2}$
We have reached a fixed poink! STOP

Pick a represencalive from each group

$\Pi_{\text {FINAL }}=\{\{E\},\{A, C\},\{E\},\{D\}\}$

MINIMAL DFA

$$
D^{\prime}=\left(S^{\prime}, \Sigma, S^{\prime} 0, \delta^{\prime}, F^{\prime}\right)
$$

$S^{\prime}=\{B, C, D, E\} \rightarrow$ the representatives
$\Sigma=\{a, b\} \rightarrow$ no change
$s^{\prime} \circ=C \rightarrow$ the representative of the group that contained D's starting state, A
$\delta=$ (on next slide)
$F=\{E\} \rightarrow$ the representatives of all the groups that contained any of D's final states (which, in this case, was just $\{E\}$)

The new transition function δ^{\prime}

- For each stake $s \in S^{\prime}$, consider its transitions in D, on each $a \in \Sigma$.
- if $\delta(s, a)=\xi$, then $\delta^{\prime}(s, a)=r$, where r is the representative of the group containing E.

$$
\begin{aligned}
\delta=\{ & (B, a) \rightarrow B,(B, b) \rightarrow D, \\
& (C, a) \rightarrow B,(C, b) \rightarrow C, \\
& (D, a) \rightarrow B,(D, b) \rightarrow E_{1}, \\
& (E, a) \rightarrow B,(E, b) \rightarrow C\}
\end{aligned}
$$

Minimal DFA for $(a \mid b) * a b b$

