CSE4-4-3
Com p tlers
Dr. Carl Ai.pkom':@.

alphonce@buffalo.edu
343 Davis Hall

Phases of
Qa

aompiiﬁ.\“

Flgure 1.6
page § of bext

Svm&aﬁ:&if:

skructkure

Symbol Table

character stream

Y

Lexical Analyzer

token étream

Y

Syntax Analyzer

[
syntax tree

'

Semantic Analyzer

1
syntax tree

Y

Intermediate Code Generator

|
intermediate representation

Machine-Independent
Code Optimizer

|
intermediate representation

Code Generator

|
target-machine code

Y

Machine-Dependent
Code Optimizer

|
target-machine code

Y

C4++11 COBOL 2002

N

Fortran 2003, 2008 C99,C11 C+98

T \

Fortran 90, 95 Visual Basic (1991) C89, C90 : Delphi (1995)

‘ A Y

C++ (1983) Ada (1983) Modula-3 COBOL-85

' \ I

Fortran 77 Ratfor (1976) Modula-2 (1978)

\ / C (1972) Smalltalk (1972) Pascal (1970)
Fortran IV (1966) BASIC (1964) BCPL (1966) Simula 67 Algol 68
CPL (1963) Simula (1962)/

Algol 60 PL/1 (1964)

P o

Fortran I1 (1958) Algol (1958) COBOL (1960)

N ‘

Fortran (1955)

T

Speedcoding (1953) FLOW-MATIC (1955)

https://commons.wikimedia.org/wiki/File:Algol&Fortran_family-by-Borkowski.svg

Rear Admiral ¢rrace Murray Hoppm‘
(1906 - 1992)

In 1952, Hopper completed her first compiler (for Sperry-Rand computer), known as the A-o
System. |...]

After the A-0, Grace Hopper and her group produced versions A-1 and A-2, improvements over
the older version. The A-2 compiler was the first compiler to be used extensively, paving the way
to the development of programming languages.

]

Hopper also originated the idea that computer programs could be written in English. She viewed
letters as simply another kind of symbol that the computer could recognize and convert into
machine code. Hopper's compiler later evolved to FLOW-MATIC compiler, which will be the base

for the extremely important language—COBOL.

https://history-computer.com/ModernComputer/Software/FirstCompiler.html

https://history-computer.com/ModernComputer/Software/FirstCompiler.html
https://commons.wikimedia.org/wiki/File:Commodore_Grace_M._Hopper,_USN_(covered).jpg
https://commons.wikimedia.org/wiki/File:Grace_Murray_Hopper,_in_her_office_in_Washington_DC,_1978,_%C2%A9Lynn_Gilbert.jpg
https://commons.wikimedia.org/wiki/File:Grace_Hopper_and_UNIVAC.jpg

Cownkext Free Grrammars

CFG G =(NT, 7,95

N is a set of non-terminals

T is o seb of terminals (= tokens from Lexical analyzer)

T n N = O (ie a symbol is cither a kerminal or a non-terminal, ot both)

? is a set of productions/grammar rules
PCcNx(NuTH

R e P is written as X = o, where X e Nand a e (N u T)*

S e N is the skart svmbc}i

Derivakions

> "derives i ohe s&e.[a (frc:-m)"

If A-B e P, and a, vy € (N U T) then aAy =¢ aPy

=c* "derives in many steps (from)"
I{ aelNUTH, m21and a1 2¢ a: =2¢ a3z =¢ A4
then a1 =2¢* am

=a* s the reﬂex&ve and Eransitive closure c:% =

e éG (Xm

Lanquages

&)zl wlweT and § s w

L is a CF lanquage if it is (&) for a
Cr &,

Gl and G2 are equivalent iff
£{G)=c(¢3R).

Gghg yniversity ot mutrate . <cse @’b%&f
Language terminology

(from Sebesta (10" ed), p. 115)

A language 1s a set of strings of symbols, drawn from
some finite set of symbols (called the alphabet of the
language).

“The strings of a language are called sentences ”

“Formal descriptions of the syntax [...] do not include
descriptions of the lowest-level syntactic units [...] called
lexemes.”

“A token of a language 1s a category of its lexemes.”

Syntax of a programming language 1s often presented in
two parts:

— regular grammar for token structure (e.g. structure of 1dentifiers)
— context-free grammar for sentence structure

xse@b%fzr

Examples of lexemes and rokens

foo
sum

= |assignment operator

.cseé’b%/zf

Backus-Naur Form (BNF)

* Backus-Naur Form (1959)

— Invented by John Backus to describe ALGOL 58, modified by
Peter Naur for ALGOL 60

— BNF 1s equivalent to context-free grammar

— BNF 1s a metalanguage used to describe another language,
the object language

— Extended BNF: adds syntactic sugar to produce more
readable descriptions

% University at Buffalo
The State University of New York

BNF Fundamentals

Sample rules [p. 128]
<assign> - <var> = <expression>
<if stmt> - if <logic expr> then <stmt>
<if stmt> - if <logic expr> then <stmt> else <stmt>

non-terminals surrounded by < and >

tokens are not surrounded by < and >
keywords in language are in bold
— separates LHS from RHS

| expresses alternative expansions for LHS
<if stmt> - if <logic expr> then <stmt>
| 1f <logic expr> then <stmt> else <stmt>

= 1s in this example a singleton token represented by its sole lexeme

.cseé’b%/zf

BNF Rules

* A rule has a left-hand side (LHS) and a right-hand
side (RHS), and consists of terminal and
nonterminal symbols

e A grammar 1s often given simply as a set of rules
(terminal and non-terminal sets are implicit in
rules, as 1s start symbol)

.cseé’b%/zf

Describing Lists

There are many situations in which a
programming language allows a list of 1tems
(e.g. parameter list, argument list).

Such a list can typically be as short as empty
or consisting of one item.

Such lists are typically not bounded.

How 1s their structure described?

Describing lists

* The are described using recursive rules.

* Here 1s a pair of rules describing a list of
identifiers, whose minimum length 1s one:

<ident list> -> 1ident
| ident , <ident list>

* Notice that ¢, ’ 1s part of the object language (the
language being described by the grammar).

G university at uttate «cse @’b%&f
Derivation of sentences from a
grammar

* A derivation 1s a repeated application of
rules, starting with the start symbol and
ending with a sentence (all terminal

symbols)

G, = ({a, the, dog, cat, chased},
{S, NP, VP, Det, N, V},
{S 2 NP VP, NP - Det N, Det = a | the,

N = dog | cat, VP = V| VP NP, V = chased},
S)

University at Buffalo (ﬂ)b
% The State University of New York ‘Cse

Example: derivation from G,

« Example: derivation of the dog chased a cat
S =>NP VP
=>Det N VP
=>the N VP
=>the dog VP
=>the dog V NP
=> the dog chased NP
=> the dog chased Det N
=>the dog chased a N
=> the dog chased a cat

E. X O Pie

L =1{ 0,1, 0o, 11, coo, 111, cooo, 1111, ...

G = ({o,11, {5, Zerolist, Onelisti,
{S => Zerolist | Onelist,
Zerolist => © | © Zerolist,
Onelist -> 1 | 1 Ownelist i,

S)

Derivations from &

Derivation of © © © © Derivation of 1 1 1

S =» Zerolist S => Onelist
=» 0 Zerolist =» 1 Ownelist
=> 0 0 Zerolist => 1 1 Onelist
=» O 0 O Zerolist => 1 13

=> O O G

Observations

Every string of symbols in a derivation is a
sentential form.

A senbence is a sentential form that has only
terminal symbols.

A Llefbwiost derivation is one i which the
leftmost nonkerminal in each senbential form
is the one that is expanded

A derivation can be leftwost, rightmost, or
neither.

Programming Lanquage
Grrammar Fragment

<program> —> <stmt-list>

<stmt-list> —> <stmt> | <stmt> ; <stmt-list>
<stmt> —> <var> = <expr>

<var> —>a | b | c | d

<expr> —> <term> + <term> | <term> - <term>
<term> -> <var> | const

Notes:
<var> 1s defined 1n the grammar
const 1s not defined 1in the grammar

derivations of
a = b + copnst

leftmost derivakion rightmost derivation
<program> => <stmt-list> <program> => <stmt-list>

=> <stmt> => <stmt>
=> <var> = <expr> => <var> = <expr>
=> a = <expr> => <var> = <term> + <term>
=> a = <term> + <term> => <var> = <term> + const
=> a = <var> + <term> => <var> = <var> + const
=> a =b + <term> => <var> = b + const
=> a = b + const => a = b + const

Parse bree

<program>
oy
<stmt-list>
i
<stmt>

= <expr>
L ™
<term> + <term>
i i
<var> const
i
b

Parse krees and tampitaﬁam

o A compiler builds a parse tree for a program
(or for different parts of a program)

o 1f the compiler cannot build a well-formed
parse tree from a given input, it reports a
compilation error

o The parse tree serves as the basis for
semantic interpretation/transtation of the
program,

Vit S 2
exp + term
l A0
term term *x const
l l l
const const 3

R &

s 2

University at Buffalo <expression>
The State University of New York 1
<assignment-expression>
|
<conditional-expression>
1
<logical-OR-expression>
|
<logical-AND-expression>
|
<inclusive-OR-expression>
|
<exclusive-OR-expression>
|
<AND-expression>
|
<equality-expression>
1
<relational-expression>
1
<shift-expression>
1
<additive-expression>
— 1
<additive-expression> +
|
<multiplicative-expression>
1
<cast-expression>
1
<unary-expression>
1
<postfix-expression>
1
<primary-expression>
1
<constant>
1
2

\

.cseé?b

Derivation of
2+5*%3

using C grammar

<multiplicative-expression>

/
<multiplicative-expression>

|
<cast-expression>
|
<unary-expression>
|
<postfix-expression>
|
<primary-expression>
|
<constant>
|
5

| e
<cast-expression>
|
<unary-expression>

|
<postfix-expression>

|
<primary-expression>

|

<constant>
|
3

