
CSE443
Compilers
Dr. Carl Alphonce

alphonce@buffalo.edu
343 Davis Hall

Phases of
a

compiler

Figure 1.6,
page 5 of text

Syntactic
structure

http://www.softwarepreservation.org/projects/FORTRAN/paper/p4-backus.pdf

http://www.bitsavers.org/pdf/univac/flow-matic/U1518_FLOW-MATIC_Programming_System_1958.pdf

https://commons.wikimedia.org/wiki/File:Algol&Fortran_family-by-Borkowski.svg

Rear Admiral Grace Murray Hopper
(1906 - 1992)

In 1952, Hopper completed her first compiler (for Sperry-Rand computer), known as the A-0
System. […]

After the A-0, Grace Hopper and her group produced versions A-1 and A-2, improvements over
the older version. The A-2 compiler was the first compiler to be used extensively, paving the way
to the development of programming languages.

[…]

Hopper also originated the idea that computer programs could be written in English. She viewed
letters as simply another kind of symbol that the computer could recognize and convert into
machine code. Hopper's compiler later evolved to FLOW-MATIC compiler, which will be the base
for the extremely important language—COBOL.

https://history-computer.com/ModernComputer/Software/FirstCompiler.html

https://history-computer.com/ModernComputer/Software/FirstCompiler.html
https://commons.wikimedia.org/wiki/File:Commodore_Grace_M._Hopper,_USN_(covered).jpg
https://commons.wikimedia.org/wiki/File:Grace_Murray_Hopper,_in_her_office_in_Washington_DC,_1978,_%C2%A9Lynn_Gilbert.jpg
https://commons.wikimedia.org/wiki/File:Grace_Hopper_and_UNIVAC.jpg

Context Free Grammars
CFG G = (N, T, P , S)

N is a set of non-terminals

T is a set of terminals (= tokens from lexical analyzer)

T ∩ N = ∅ (i.e. a symbol is either a terminal or a non-terminal, not both)

P is a set of productions/grammar rules

P ⊆ N × (N ∪ T)*

R ∈ P is written as X → α, where X ∈ N and α ∈ (N ∪ T)*

S ∈ N is the start symbol

Derivations
⇒G "derives in one step (from G)"

If A→β ∈ P, and α, γ ∈ (N ∪ T)* then αAγ ⇒G αβγ

⇒G* "derives in many steps (from G)"

If αi ∈ (N ∪ T)*, m ≥ 1 and α1 ⇒G α2 ⇒G α3 ⇒G α4 … ⇒G αm

 then α1 ⇒G* αm

⇒G* is the reflexive and transitive closure of ⇒G

Languages

ℒ(G) = { w | w ∈ T* and S ⇒G* w }

L is a CF language if it is ℒ(G) for a
CFG G.

G1 and G2 are equivalent iff
ℒ(G1)=ℒ(G2).

5

Language terminology
(from Sebesta (10th ed), p. 115)

• A language is a set of strings of symbols, drawn from
some finite set of symbols (called the alphabet of the
language).

• “The strings of a language are called sentences”
• “Formal descriptions of the syntax […] do not include

descriptions of the lowest-level syntactic units […] called
lexemes.”

• “A token of a language is a category of its lexemes.”
• Syntax of a programming language is often presented in

two parts:
– regular grammar for token structure (e.g. structure of identifiers)
– context-free grammar for sentence structure

6

Examples of lexemes and tokens
Lexemes Tokens

foo identifier
i identifier
sum identifier
-3 integer_literal
10 integer_literal
1 integer_literal
; statement_separator
= assignment_operator

7

Backus-Naur Form (BNF)
• Backus-Naur Form (1959)

– Invented by John Backus to describe ALGOL 58, modified by
Peter Naur for ALGOL 60

– BNF is equivalent to context-free grammar
– BNF is a metalanguage used to describe another language,

the object language
– Extended BNF: adds syntactic sugar to produce more

readable descriptions

8

BNF Fundamentals
• Sample rules [p. 128]

<assign> → <var> = <expression>
<if_stmt> → if <logic_expr> then <stmt>
<if_stmt> → if <logic_expr> then <stmt> else <stmt>

• non-terminals/tokens surrounded by < and >
• lexemes are not surrounded by < and >
• keywords in language are in bold
• → separates LHS from RHS
• | expresses alternative expansions for LHS

<if_stmt> → if <logic_expr> then <stmt>
| if <logic_expr> then <stmt> else <stmt>

• = is in this example a lexeme

tokens

singleton token represented by its sole lexeme

9

BNF Rules
• A rule has a left-hand side (LHS) and a right-hand

side (RHS), and consists of terminal and
nonterminal symbols

• A grammar is often given simply as a set of rules
(terminal and non-terminal sets are implicit in
rules, as is start symbol)

10

Describing Lists
• There are many situations in which a

programming language allows a list of items
(e.g. parameter list, argument list).

• Such a list can typically be as short as empty
or consisting of one item.

• Such lists are typically not bounded.
• How is their structure described?

11

Describing lists
• The are described using recursive rules.
• Here is a pair of rules describing a list of

identifiers, whose minimum length is one:
<ident_list> -> ident

| ident , <ident_list>
• Notice that ‘,’ is part of the object language (the

language being described by the grammar).

12

Derivation of sentences from a
grammar

• A derivation is a repeated application of
rules, starting with the start symbol and
ending with a sentence (all terminal
symbols)

13

Recall example 2

G2 = ({a, the, dog, cat, chased},
{S, NP, VP, Det, N, V},
{S à NP VP, NP à Det N, Det à a | the,
N à dog | cat, VP à V | VP NP, V à chased},

S)

14

Example: derivation from G2

• Example: derivation of the dog chased a cat
S à NP VP
à Det N VP
à the N VP
à the dog VP
à the dog V NP
à the dog chased NP
à the dog chased Det N
à the dog chased a N
à the dog chased a cat

=>
=>
=>
=>
=>
=>
=>
=>
=>

Example
L = { 0, 1, 00, 11, 000, 111, 0000, 1111, … }

G = ({0,1}, {S, ZeroList, OneList},
{S -> ZeroList | OneList,
ZeroList -> 0 | 0 ZeroList,
OneList -> 1 | 1 OneList },
S)

Derivations from G
Derivation of 0 0 0 0
S => ZeroList
 => 0 ZeroList
 => 0 0 ZeroList
 => 0 0 0 ZeroList
 => 0 0 0 0

Derivation of 1 1 1
S => OneList
 => 1 OneList
 => 1 1 OneList
 => 1 1 1

Observations
Every string of symbols in a derivation is a
sentential form.
A sentence is a sentential form that has only
terminal symbols.
A leftmost derivation is one in which the
leftmost nonterminal in each sentential form
is the one that is expanded
A derivation can be leftmost, rightmost, or
neither.

Programming Language
Grammar Fragment

<program> -> <stmt-list>
<stmt-list> -> <stmt> | <stmt> ; <stmt-list>
<stmt> -> <var> = <expr>
<var> -> a | b | c | d
<expr> -> <term> + <term> | <term> - <term>
<term> -> <var> | const

Notes:
<var> is defined in the grammar
const is not defined in the grammar

rightmost derivation

derivations of
a = b + const

leftmost derivation

<program> => <stmt-list>
 => <stmt>
 => <var> = <expr>
 => a = <expr>
 => a = <term> + <term>
 => a = <var> + <term>
 => a = b + <term>
 => a = b + const

<program> => <stmt-list>
 => <stmt>
 => <var> = <expr>
 => <var> = <term> + <term>
 => <var> = <term> + const
 => <var> = <var> + const
 => <var> = b + const
 => a = b + const

<program> -> <stmt-list>
<stmt-list> -> <stmt> | <stmt> ; <stmt-list>
<stmt> -> <var> = <expr>
<var> -> a | b | c | d
<expr> -> <term> + <term> | <term> - <term>
<term> -> <var> | const

grammar

Parse tree
<program>

<stmt-list>

<stmt>

 <var> = <expr>

 a <term> + <term>

 <var> const

 b Sam
e p

ars
e t

ree

reg
ard

les
s o

f

de
riv

ati
on

Parse trees and compilation

A compiler builds a parse tree for a program
(or for different parts of a program)
If the compiler cannot build a well-formed
parse tree from a given input, it reports a
compilation error
The parse tree serves as the basis for
semantic interpretation/translation of the
program.

Example
2+5*3
 exp

 / | \
 exp + term

 | / | \
 term term * const

 | | |
 const const 3

| |
2 5

30

Derivation of
2+5*3

using C grammar

<expression>

<conditional-expression>

<assignment-expression>

<logical-OR-expression>

<inclusive-OR-expression>

<AND-expression>

<logical-AND-expression>

<exclusive-OR-expression>

<equality-expression>

<relational-expression>

<shift-expression>

<additive-expression>

<additive-expression> + <multiplicative-expression>

<multiplicative-expression>

<cast-expression>

<unary-expression>

<postfix-expression>

<primary-expression>

<constant>

2

<multiplicative-expression> <cast-expression>

<unary-expression>

<postfix-expression>

<primary-expression>

<constant>

3

<cast-expression>

<unary-expression>

<postfix-expression>

<primary-expression>

<constant>

5

*

