CSE4-4-3
Com p tlers
Dr. Carl Ai.pkom':@.

alphonce@buffalo.edu
343 Davis Hall

Project progress

o User stories
o S&orj - kasike de&ompos&%mm

o Meet with PMs tomorrow

Phases of
Qa

aompiiﬁ.\“

Flgure 1.6
page § of bext

Svm&aﬁ:&if:

skructkure

Symbol Table

character stream

Y

Lexical Analyzer

token étream

Y

Syntax Analyzer

[
syntax tree

'

Semantic Analyzer

1
syntax tree

Y

Intermediate Code Generator

|
intermediate representation

Machine-Independent
Code Optimizer

|
intermediate representation

Code Generator

|
target-machine code

Y

Machine-Dependent
Code Optimizer

|
target-machine code

Y

Sampm Qramriars

http://www.schemers.org/Documents/Standards/
R5RS/HTML/

https://sicstus.sics.se/sicstus/docs/latestd/
html/sicstus.html/
ref _002dsyn_002dsyn_002dsen.html

https://docs.oracle.com/javase/specs/jls/sel3/
html/]1s=19.html

http://blackbox.userweb.mwn.de/Pascal-EBNF.html

https://cs.wmich.edu/~gupta/teaching/cs4850/
sumlIIf6/The%s20syntax%s2001%20C%201n%20Backus—
Naurs%s20form. htm

http://www.schemers.org/Documents/Standards/R5RS/HTML/
http://www.schemers.org/Documents/Standards/R5RS/HTML/
https://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/ref_002dsyn_002dsyn_002dsen.html
https://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/ref_002dsyn_002dsyn_002dsen.html
https://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/ref_002dsyn_002dsyn_002dsen.html
https://docs.oracle.com/javase/specs/jls/se13/html/jls-19.html
https://docs.oracle.com/javase/specs/jls/se13/html/jls-19.html
http://blackbox.userweb.mwn.de/Pascal-EBNF.html
https://cs.wmich.edu/~gupta/teaching/cs4850/sumII06/The%20syntax%20of%20C%20in%20Backus-Naur%20form.htm
https://cs.wmich.edu/~gupta/teaching/cs4850/sumII06/The%20syntax%20of%20C%20in%20Backus-Naur%20form.htm

Language Semantics

What's in language spea&f&ca&om?

What's left up to the language
implementor?

% University at Buffalo
The State University of New York

6.2.2 Evaluation Order

The order of evaluation of subexpressions within an expression is undefined. In particular, you
cannot assume that the expression is evaluated left to right. For example:

int x=f(2)+g(3); // undefined whether f{() or g() is called first

C++ Programming Language, 3rd edition.
Bjarne Stroustrup. (c) 1997. Page 122.

University at Buffalo (ﬂ)b
% The State University of New York ‘Cse

A compiler translates high level language statements into a much
larger number of low-level statements, and then applies
optimizations. The entire translation process, including

optimizations, must preserve the semantics of the original high-level
program.

By not specifying the order in which subexpressions are evaluated
(left-to-right or right-to-left) a C++ compiler can potentially re-
order the resulting low-level instructions to give a “better” resullt.

The C++ programming lahguage, 3rd edition, (c) 1997, Bjarkhe Stroustrup, pg 74

4.6 Sizes

Some of the aspects of C++’s fundamental types, such as the size of an int, are implementation-
defined (§C.2). I point out these dependencies and often recommend avoiding them or taking steps
to minimize their impact. Why should you bother? People who program on a variety of systems or
use a variety of compilers care a lot because if they don’t, they are forced to waste time finding and
fixing obscure bugs. People who claim they don’t care about portability usually do so because they

use only a single system and feel they can afford the attitude that ‘‘the language is what my com-
piler implements.”” This is a narrow and shortsighted view. If your program is a success, it 1s
likely to be ported, so someone will have to find and fix problems related to implementation-
dependent features. In addition, programs often need to be compiled with other compilers for the
same system, and even a future release of your favorite compiler may do some things differently
from the current one. It is far easier to know and limit the impact of implementation dependencies

The C++ programming language, 3rd edition, (€) 1997, Bjarne Stroustrup, pg 7§

The reason for providing more than one integer type, more than one unsigned type, and more
than one floating-point type is to allow the programmer to take advantage of hardware characteris-
tics. On many machines, there are significant differences in memory requirements, memory access
times, and computation speed between the different varieties of fundamental types. If you know a

machine,.it. is usually easy to choose, for example, the appropriate integer type for a particular vari-
able. Writing truly portable low-level code is harder.

Sizes of C++ objects are expressed in terms of multiples of the size of a char, so by definition
the size of a char is 1. The size of an object or type can be obtained using the sizeof operator
(§6.2). This 1s what is guaranteed about sizes of fundamental types:

1 = sizeof(char) < sizeof{short) < sizeof(int) < sizeof(long)
1 < sizeof(bool) < sizeof(long)

sizeof(char) < sizeof(wchar t) < sizeof(long)

sizeof(float) < sizeof{double) < sizeof(long double)
sizeof(N) = sizeof(signed N) = sizeof(unsigned N)

where N can be char, short int, int, or long int. In addition, it is guaranteed that a char has at least
8 bits, a short at least 16 bits, and a long at least 32 bits. A char can hold a character of the
machine’s character set.

The C programming language, (€) 197%, Brian Kernighan and Dennis Ritchie, pg 34

The precision of these objects depends on the machine at hand; the
table below shows some representative values.

DEC PDP-11 Honeywell 6000 IBM 370 Interdata 8/32

ASCII ASCII EBCDIC ASCII

char 8 bits 9 bits 8 bits 8 bits
int 16 36 32 32
short 16 36 16 16
long 32 36 32 32
float 30 36 32 2
double 64 12 64 64

The intent is that short and long should provide different lengths of
integers where practical; int will normally reflect the most ‘“‘natural’’ size
for a particular machine. As you can see, each compiler is free to interpret
short and long as appropriate for its own hardware. About all you should
count on is that short is no longer than long.

Programming Lanquage
Grrammar Fragment

<program> —> <stmt-list>

<stmt-list> —> <stmt> | <stmt> ; <stmt-list>
<stmt> —> <var> = <expr>

<var> —>a | b | c | d

<expr> —> <term> + <term> | <term> - <term>
<term> -> <var> | const

Notes:
<var> 1s defined 1n the grammar
const 1s not defined 1in the grammar

derivations of
a = b + copnst

leftmost derivakion rightmost derivation
<program> => <stmt-list> <program> => <stmt-list>

=> <stmt> => <stmt>
=> <var> = <expr> => <var> = <expr>
=> a = <expr> => <var> = <term> + <term>
=> a = <term> + <term> => <var> = <term> + const
=> a = <var> + <term> => <var> = <var> + const
=> a =b + <term> => <var> = b + const
=> a = b + const => a = b + const

Parse bree

<program>
oy
<stmt-list>
i
<stmt>

= <expr>
L ™
<term> + <term>
i i
<var> const
i
b

Parse krees and tampitaﬁam

o A compiler builds a parse tree for a program
(or for different parts of a program)

o 1f the compiler cannot build a well-formed
parse tree from a given input, it reports a
compilation error

o The parse tree serves as the basis for
semantic interpretation/transtation of the
program,

Vit S 2
exp + term
l A0
term term *x const
l l l
const const 3

R &

Programming Lanquage
Grrammar Fragment

<program> —> <stmt-list>

<stmt-list> —> <stmt> | <stmt> ; <stmt-list>
<stmt> —> <var> = <expr>

<var> —>a | b | c | d

<expr> —> <term> + <term> | <term> - <term>
<term> -> <var> | const

Notes:
<var> 1s defined 1n the grammar
const 1s not defined 1in the grammar

A leftmost derivakion of
a = b + const

<program> => <stmt-list>

=> <stmt>

=> <var> = <expr>

=> a = <expr>

=> a = <term> + <term>
=>. a"= <Valf:s t+.=term=
=> a = b + <term>

=> a = b + const

Parse btree

<program>
i
<stmt-list>
i
<stmt>
<var> = <expr=>
§ T~
a <term> + <term>
i i
<var> const
i

b

Parse krees and tampitaﬁam

o A compiler builds a parse tree for a program
(or for different parts of a program)

o 1f the compiler cannot build a well-formed
parse tree from a given input, it reports a
compilation error

o The parse tree serves as the basis for
semantic interpretation/transtation of the
program,

Ambigu&j

Ambiguity tn grammars

o A grammar is ambiquous i and only if it
generates a sentential form that has two
or more distinct parse trees.

® Operator precedence and operator
associativity are two examples of ways in
which a gramwmar can provid& unanmbiquous
interpretation,

O-F?eraﬁor Preced@w\&e ambigui&v

The following grammar is ambiquous:

<expr> —> <expr> <op> <expr> | const
<Qp>&> =1/

The grammar treats the two operators, '-' and
7 equivai.emﬂj

G
The State

iversity at Buffalo
e University of New York

An ambiguous grammar

.cseé’b%/zf

for arithmetic expressions

<expr> -> <expr> <op> <expr> |

<op> -> / | =

<expr>

/NN

<expr>

/N

<expr> <op> <expr>

<op> <expr>

const const /| const

const

<expr>

N

<expr> <op> <expr>

/1N

<expr> <op> <expr>

Vo

const const /| const

Disambiquating the grammar

This grammar (fragment) is unambiquous:

<expr> —> <expr> - <term> | <term>
<term> —> <term> / const | const

The gramwmar treats the two OP@J"&&OT’S, '~ and '/,
diﬂ@.renﬂva

In this grammar, '/' has higher precedence than

¢!

. Within a given subtree, deeper nodes are
evaluated before shallower notes.

G sty s mavete cse @’b%&f
Disambiguating the grammar

« If we use the parse tree to indicate precedence levels of the
operators, we can remove the ambiguity.

« The following rules give / a higher precedence than -

<expr> -> <expr> - <term> | <term>
<term> -> <term> / const | const

<expr>

AN

<expr> - <term>
| SN T

<term> <term> /| const
| |

const const

s 2

University at Buffalo <expression>
The State University of New York 1
<assignment-expression>
|
<conditional-expression>
1
<logical-OR-expression>
|
<logical-AND-expression>
|
<inclusive-OR-expression>
|
<exclusive-OR-expression>
|
<AND-expression>
|
<equality-expression>
1
<relational-expression>
1
<shift-expression>
1
<additive-expression>
— 1
<additive-expression> +
|
<multiplicative-expression>
1
<cast-expression>
1
<unary-expression>
1
<postfix-expression>
1
<primary-expression>
1
<constant>
1
2

\

.cseé?b

Derivation of
2+5*%3

using C grammar

<multiplicative-expression>

/
<multiplicative-expression>

|
<cast-expression>
|
<unary-expression>
|
<postfix-expression>
|
<primary-expression>
|
<constant>
|
5

| e
<cast-expression>
|
<unary-expression>

|
<postfix-expression>

|
<primary-expression>

|

<constant>
|
3

University at Buffalo (ﬂ)b
% The State University of New York ‘Cse

Recursion and parentheses

e To generate 2+3*4 or 3*4+2, the parse tree 1s built
so that + 1s higher in the tree than *.

* To force an addition to be done prior to a

multiplication we must use parentheses, as in
(2+3)*4,

* Grammar captures this in the recursive case of an
expression, as in the following grammar fragment:
<expr> 2> <expr> + <term> | <term>
<term> = <term> * <factor> | <factor>
<factor> = <variable> | <constant> | “(” <expr> *)”

ﬂﬁL“ C C:F:tm

o Given a regular language L we can atwajs conskruck a
context free grammar & such that L = £(G).

o For every reqular lanquage L there is an NFA M = (53,5,Fs0)
such that L = £(Mm).

o Bulld & = (N,T,750) as follows:
o N={NJ|seS!
o T={t]teXl
o If 8(i,a)=], then add Ni = a Nj to P
o IfiecF then add N; 2 c bo P

@ So = N

G = (Ao, A, Az, Ast, 1o, b, 1A = a A,
Ao = b Ao, Ao =@ a A, AL = b Ay, Az - b A,
Az = cf, Ao }

KL ¢ CrL
Show that not all CF lanquages are

reqular.

To do Ehis we c:-mi,v need ko
demonstrate bhab Ehere exisks a CrFL
that is not reqular.

Consider L ={ anbn | n 2 1}

Clainm: L € CFL, L ¢ RL

KL ¢ C+L
Proot (skekch):

LeCFL: S = aSb | ab
L ¢ RL (by contradiction):
Assumwe L is reqular. I this case there exists a DFA
D=(N,2,5,F50) such that £(D) = L.
Let k = [N]. Consider aibi, where irk,
Suppose 5(s0, al) = sr. Since vk, not all of the states between

se and s, are distinct, Hence, there are v and w, 0 £ v ¢ w £ Kk
such bhat s, = s.. In obther words, there is a Loop.

This DFA can certainly recognize abt but it can also
recognize ajbi, where L # 5 bj foi.i.owur\g the LQOFQ

"REGULAR GRAMMAKRS CANNGT COUNT™

Relevance?

Nested {' and '}’

public class Foo {
public static void main(String[] args) {
for (int i=0; i<args.length; i++) {
if (argslI].length() < 3) {1 .. }
else { .. }

Conkext Free Grammars
and parsiing

o 0(n3) algorithms to parse any CFG
exist

o Programming language constructs
can generally be parsed in O(n)

Tot;omdawm .

bolko m-up

o A E:opmdowm parser builds a parse tree from
root to the leaves

o easier to conskruck bj hand

o A bmff:f:om-wup parser builds a parse tree from
leaves to root

o Handles a larger class of grammars

o tools (yacc/bison) build bottom-up parsers

Cur Presem&aﬁmm
First top-down, then bottom-up

o Present top-down parsing first.

o Inkroduce hecessary vo&abuimv and
daka skruckures.

@ Move on to ba&&om-up parsimQ
second.,

vocab: look-ahead

o The current symbol being scanned
in the tnput is called the Loolkahead
symbol.,

PARSER

Foleein

Foleen |

l

Folkeen | boleen

Foleein |

Foleein

To Pmciowm parsing

o Start from grammar's start symbol

o Build parse tree so iks 3&@.&& maktches
LMFM,%

o predictive parsing: a simple form of
recursive descent parsing

Rasie idea:
&rj to build a derivation
S =p* ELMF.?U,E

S =>* a S
“5?0“ A
% g@)

/
R TT - T T T

Lv\pu&

FIRST ()

o If ac(NUT)* then FIRST(a) is "the set of

terminals that appear as the first svmbals of one
or more skrings of terminals qenerated from

o.” [p. 64
3 X! Inf A ->» a (then FIRST(A) = {a}

o Ex. If A => a 8| B then FIRST(A) = {a} v FIRST(R)

FIRST ()

o First sets are considered when there
are two (or more) productions to
expamdA e N: A=->alp

o Predictive parsing requires that
FIRST(a) n FIRST(S) = o

€ eradwcﬁams

o If Lookahead svmbot does not match first set,
use ¢ production not to advance lookahead

svmbot but itnstead "discard” nown-terminal:
o optexpt -> expr | ¢

o "While parsing optexpr, if the lookahead
symbol is not in FIRST(expr), then the ¢

production is used” [p. 66]

Left recursion

o Grrammars with left recursion are
problematic for top-down parsers, as
they lead to infinite regress.

Left recursion example

EX.FT‘

o

expr + term

expr => expr + term | term / {\

expr term

8 Crroavnmar:

ferm —» id

o FIRST sets for rule / !\

alkernatives are not cii,sj@m& expr + lterm

o FIRST (expr) = id

term

o FIRST(term) = id

Left recursion example

EXPT
o Grammar: - l -/ ﬁ\-
expr => expr + term | term / !\
term -> id - I -
o FIRST sets for rule W ‘\
alternatives are not disjoint: T I -
o FIRST(expr) = id
; erm
o FIRST(term) = id !

Rewriting grammar to
remove lett recursion

o expr rule is of form A > Aa | g

8 Rewrilte as kwo rules

o A-> B R

o R->aR|ce

Back to example

QKPT‘

8 Crrammmar LS re-
wrikken as

o expr -» Ferm I

o R => +lterm R | ¢

Ambtgu&j

@ A grammar & s ambiguous U 30 e L(&)

that has two or more distinct parse trees.
o Example - dangling 'else”:
if <expr> then if <expr> then <stmb> else <skmt>
i <exprz then i ¥ <expr> then <stmt> } else <skmb>

if <expr> then { <expr> then <stmtb> else <stmt> }

dangling else resolution

o u.su&ttv resolved so else makches closest if-
thewn

o we cal re-write qrammar to force this
interpretation (ms = mabkched statewment, os =
ope statement)

<skmb> => ems> | <os>
ams> —> if <expr> then ams> else <ms> | ...

cos> => if <exprr then <stmb> | if <expr> then <ms> else <os>

