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User stories 

Story -> task decomposition 

Meet with PMs tomorrow
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Language Semantics

What's in language specification? 

What's left up to the language 
implementor?



Shown on Visualizer
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C++ Programming Language, 3rd edition.  
Bjarne Stroustrup.  (c) 1997.  Page 122.



A compiler translates high level language statements into a much 
larger number of low-level statements, and then applies 
optimizations.  The entire translation process, including 
optimizations, must preserve the semantics of the original high-level 
program.
The next slides shows that different phases of compilation can apply 
different types of optimizations (some target-independent, some 
target-dependent).
By not specifying the order in which subexpressions are evaluated 
(left-to-right or right-to-left) a C++ compiler can potentially re-
order the resulting low-level instructions to give a “better” result.
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The C++ programming language, 3rd edition, (c) 1997, Bjarne Stroustrup, pg 74



The C++ programming language, 3rd edition, (c) 1997, Bjarne Stroustrup, pg 75



The C programming language, (c) 1978, Brian Kernighan and Dennis Ritchie, pg 34



Review



Programming Language 
Grammar Fragment

<program> -> <stmt-list> 
<stmt-list> -> <stmt> | <stmt> ; <stmt-list> 
<stmt> -> <var> = <expr> 
<var> -> a | b | c | d 
<expr> -> <term> + <term> | <term> - <term> 
<term> -> <var> | const 

Notes: 
<var> is defined in the grammar 
const is not defined in the grammar



rightmost derivation

derivations of  
a = b + const

leftmost derivation

<program> => <stmt-list> 
          => <stmt> 
          => <var> = <expr> 
          => a = <expr> 
          => a = <term> + <term> 
          => a = <var> + <term> 
          => a = b + <term> 
          => a = b + const 

<program> => <stmt-list> 
          => <stmt> 
          => <var> = <expr> 
          => <var> = <term> + <term> 
          => <var> = <term> + const 
          => <var> = <var> + const 
          => <var> = b + const 
          => a = b + const 

<program> -> <stmt-list> 
<stmt-list> -> <stmt> | <stmt> ; <stmt-list> 
<stmt> -> <var> = <expr> 
<var> -> a | b | c | d 
<expr> -> <term> + <term> | <term> - <term> 
<term> -> <var> | const 

grammar



Parse tree
<program> 

<stmt-list> 

<stmt> 

    <var> =     <expr> 

           a     <term> + <term> 

                 <var>    const 

        b Sam
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Parse trees and compilation

A compiler builds a parse tree for a program 
(or for different parts of a program) 
If the compiler cannot build a well-formed 
parse tree from a given input, it reports a 
compilation error 
The parse tree serves as the basis for 
semantic interpretation/translation of the 
program.



Example 
2+5*3
   exp 

   /   |   \  
     exp    +    term 

         |         /   |   \ 
         term     term * const 

         |          |        | 
      const     const     3 

|          |      
2         5



Programming Language 
Grammar Fragment

<program> -> <stmt-list> 
<stmt-list> -> <stmt> | <stmt> ; <stmt-list> 
<stmt> -> <var> = <expr> 
<var> -> a | b | c | d 
<expr> -> <term> + <term> | <term> - <term> 
<term> -> <var> | const 

Notes: 
<var> is defined in the grammar 
const is not defined in the grammar



A leftmost derivation of 
a = b + const

<program> => <stmt-list> 
=> <stmt> 
=> <var> = <expr> 
=> a = <expr> 
=> a = <term> + <term> 
=> a = <var> + <term> 
=> a = b + <term> 
=> a = b + const 



Parse tree
<program> 

<stmt-list> 

<stmt> 

    <var> =     <expr> 

           a     <term> + <term> 

                 <var>    const 

        b 



Parse trees and compilation

A compiler builds a parse tree for a program 
(or for different parts of a program) 
If the compiler cannot build a well-formed 
parse tree from a given input, it reports a 
compilation error 
The parse tree serves as the basis for 
semantic interpretation/translation of the 
program.



Ambiguity



Ambiguity in grammars

A grammar is ambiguous if and only if it 
generates a sentential form that has two 
or more distinct parse trees. 
Operator precedence and operator 
associativity are two examples of ways in 
which a grammar can provide unambiguous 
interpretation.



Operator precedence ambiguity

The following grammar is ambiguous: 

<expr> -> <expr> <op> <expr> | const 
<op> -> - | / 

The grammar treats the two operators, '-' and 
'/', equivalently
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An ambiguous grammar
for arithmetic expressions

<expr> -> <expr> <op> <expr>  |  const
<op> -> /  |  -

<expr>

<expr> <expr>

<expr> <expr>

<expr>

<expr> <expr>

<expr> <expr>

<op>

<op>

<op>

<op>

const const const const const const- -/ /

<op>



Disambiguating the grammar

This grammar (fragment) is unambiguous: 

<expr> -> <expr> - <term> | <term> 
<term> -> <term> / const | const 

The grammar treats the two operators, '-' and '/', 
differently. 

In this grammar, '/' has higher precedence than 
'-'.  Within a given subtree, deeper nodes are 
evaluated before shallower notes.
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Disambiguating the grammar
• If we use the parse tree to indicate precedence levels of the 

operators, we can remove the ambiguity.
• The following rules give / a higher precedence than -

<expr> -> <expr> - <term>  |  <term>
<term> -> <term> / const | const

<expr>

<expr> <term>

<term> <term>

const const

const/

-
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Derivation of
2+5*3

using C grammar

<expression>

<conditional-expression>

<assignment-expression>

<logical-OR-expression>

<inclusive-OR-expression>

<AND-expression>

<logical-AND-expression>

<exclusive-OR-expression>

<equality-expression>

<relational-expression>

<shift-expression>

<additive-expression>

<additive-expression> + <multiplicative-expression>

<multiplicative-expression>

<cast-expression>

<unary-expression>

<postfix-expression>

<primary-expression>

<constant>

2

<multiplicative-expression> <cast-expression>

<unary-expression>

<postfix-expression>

<primary-expression>

<constant>

3

<cast-expression>

<unary-expression>

<postfix-expression>

<primary-expression>

<constant>

5

*
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Recursion and parentheses

• To generate 2+3*4 or 3*4+2, the parse tree is built 
so that + is higher in the tree than *.

• To force an addition to be done prior to a 
multiplication we must use parentheses, as in 
(2+3)*4.

• Grammar captures this in the recursive case of an 
expression, as in the following grammar fragment:

<expr> à <expr> + <term> | <term>
<term> à <term> * <factor> | <factor>
<factor> à <variable> | <constant> | “(” <expr> “)”



RL ⊆ CFL
Given a regular language L we can always construct a 
context free grammar G such that L = 𝓛(G). 

For every regular language L  there is an NFA M = (S,∑,𝛅,F,s0) 
such that L = 𝓛(M). 

Build G = (N,T,P,S0) as follows: 

N = { Ns | s ∈ S } 

T = { t | t ∈ ∑ } 

If 𝛅(i,a)=j, then add Ni → a Nj to P 

If i ∈ F, then add Ni → 𝜀 to P 

S0 = Nso



(a|b)*abb

G = ( {A0, A1, A2, A3}, {a, b}, {A0 → a A0, 
A0 → b A0, A0 → a A1, A1 → b A2, A2 → b A3, 
A3 → 𝜀}, A0 }

0 1 2 3
a b b

a

b



RL ⊊ CFL
Show that not all CF languages are 
regular. 

To do this we only need to 
demonstrate that there exists a CFL 
that is not regular. 

Consider L = { anbn | n ≥ 1 } 

Claim: L ∈ CFL, L ∉ RL



RL ⊊ CFL
Proof (sketch): 

L ∈ CFL: S → aSb | ab 

L ∉ RL (by contradiction): 

Assume L is regular. In this case there exists a DFA 
D=(N,∑,𝛅,F,s0) such that 𝓛(D) = L. 

Let k = |N|.  Consider aibi, where i>k. 

Suppose 𝛅(s0, ai) = sr.  Since i>k, not all of the states between 
s0 and sr are distinct.  Hence, there are v and w, 0 ≤ v < w ≤ k 
such that sv = sw.  In other words, there is a loop. 

This DFA can certainly recognize aibi but it can also 
recognize ajbi, where i ≠ j, by following the loop. 

"REGULAR GRAMMARS CANNOT COUNT"



Relevance? 
Nested '{' and '}'

public class Foo { 
  public static void main(String[] args) { 
    for (int i=0; i<args.length; i++) { 
        if (args[I].length() < 3) { … } 

else { … } 
 } 

 } 
}



Context Free Grammars 
and parsing

O(n3) algorithms to parse any CFG 
exist 

Programming language constructs 
can generally be parsed in O(n)



Top-down & 
bottom-up

A top-down parser builds a parse tree from 
root to the leaves 

easier to construct by hand 

A bottom-up parser builds a parse tree from 
leaves to root 

Handles a larger class of grammars 

tools (yacc/bison) build bottom-up parsers



Our presentation 
First top-down, then bottom-up

Present top-down parsing first. 

Introduce necessary vocabulary and 
data structures. 

Move on to bottom-up parsing 
second.



vocab: look-ahead
The current symbol being scanned 
in the input is called the lookahead 
symbol.

token token token token token token

PARSER



Top-down parsing

Start from grammar's start symbol 

Build parse tree so its yield matches 
input 

predictive parsing: a simple form of 
recursive descent parsing



Basic idea: 
try to build a derivation 

S =>* input
S =>* 𝛼 

    …?… 

  =>* input
...?...

S

input

𝛼



If 𝛼∈(NUT)* then FIRST(𝛼) is "the set of 
terminals that appear as the first symbols of one 
or more strings of terminals generated from 
𝛼." [p. 64] 

Ex: If A -> a 𝛽 then FIRST(A) = {a} 

Ex. If A -> a 𝛽 | B then FIRST(A) = {a} ∪ FIRST(B)

FIRST(𝛼)



FIRST(𝛼)

First sets are considered when there 
are two (or more) productions to 
expand A ∈ N:  A -> 𝛼 | 𝛽 

Predictive parsing requires that 
FIRST(𝛼) ∩ FIRST(𝛽) = ∅



𝜀 productions

If lookahead symbol does not match first set, 
use 𝜀 production not to advance lookahead 
symbol but instead "discard" non-terminal: 

optexpt -> expr | 𝜀 

"While parsing optexpr, if the lookahead 
symbol is not in FIRST(expr), then the 𝜀 
production is used" [p. 66]



Left recursion
Grammars with left recursion are 
problematic for top-down parsers, as 
they lead to infinite regress.



Left recursion example

Grammar: 

expr -> expr + term | term 

term -> id 

FIRST sets for rule 
alternatives are not disjoint: 

FIRST(expr) = id 

FIRST(term) = id

expr

+ termexpr

+ termexpr

+ term

term

expr



Left recursion example

Grammar: 

expr -> expr + term | term 

term -> id 

FIRST sets for rule 
alternatives are not disjoint: 

FIRST(expr) = id 

FIRST(term) = id

expr

+ termexpr

+ termexpr

+ term

term

𝛽 A𝛼 A𝛼 A𝛼

expr

𝛽A 𝛼



Rewriting grammar to 
remove left recursion

expr rule is of form A -> A 𝛼 | 𝛽 

Rewrite as two rules 

A -> 𝛽 R 

R -> 𝛼 R | 𝜀



Back to example

Grammar is re-
written as 

expr -> term R 

R -> + term R | 𝜀

expr

R

+ term

term

𝛽 𝛼 𝛼 𝛼

R

+ term R

+ term

𝜀

R



Ambiguity

A grammar G is ambiguous if ∃ 𝛔 ∈ 𝓛(G) 
that has two or more distinct parse trees. 

Example - dangling 'else': 

if <expr> then if <expr> then <stmt> else <stmt> 

if <expr> then { if <expr> then <stmt> } else <stmt> 

if <expr> then { if <expr> then <stmt> else <stmt> }



dangling else resolution

usually resolved so else matches closest if-
then 

we can re-write grammar to force this 
interpretation (ms = matched statement, os = 
open statement) 

<stmt> -> <ms> | <os> 

<ms> -> if <expr> then <ms> else <ms> | … 

<os> -> if <expr> then <stmt> | if <expr> then <ms> else <os>


