
CSE443
Compilers
Dr. Carl Alphonce

alphonce@buffalo.edu
343 Davis Hall

Project progress

User stories

Story -> task decomposition

Meet with PMs tomorrow

Phases of
a

compiler

Figure 1.6,
page 5 of text

Syntactic
structure

Sample grammars
http://www.schemers.org/Documents/Standards/
R5RS/HTML/

https://sicstus.sics.se/sicstus/docs/latest4/
html/sicstus.html/
ref_002dsyn_002dsyn_002dsen.html

https://docs.oracle.com/javase/specs/jls/se13/
html/jls-19.html

http://blackbox.userweb.mwn.de/Pascal-EBNF.html

https://cs.wmich.edu/~gupta/teaching/cs4850/
sumII06/The%20syntax%20of%20C%20in%20Backus-
Naur%20form.htm

http://www.schemers.org/Documents/Standards/R5RS/HTML/
http://www.schemers.org/Documents/Standards/R5RS/HTML/
https://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/ref_002dsyn_002dsyn_002dsen.html
https://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/ref_002dsyn_002dsyn_002dsen.html
https://sicstus.sics.se/sicstus/docs/latest4/html/sicstus.html/ref_002dsyn_002dsyn_002dsen.html
https://docs.oracle.com/javase/specs/jls/se13/html/jls-19.html
https://docs.oracle.com/javase/specs/jls/se13/html/jls-19.html
http://blackbox.userweb.mwn.de/Pascal-EBNF.html
https://cs.wmich.edu/~gupta/teaching/cs4850/sumII06/The%20syntax%20of%20C%20in%20Backus-Naur%20form.htm
https://cs.wmich.edu/~gupta/teaching/cs4850/sumII06/The%20syntax%20of%20C%20in%20Backus-Naur%20form.htm

Language Semantics

What's in language specification?

What's left up to the language
implementor?

Shown on Visualizer

33

C++ Programming Language, 3rd edition.
Bjarne Stroustrup. (c) 1997. Page 122.

A compiler translates high level language statements into a much
larger number of low-level statements, and then applies
optimizations. The entire translation process, including
optimizations, must preserve the semantics of the original high-level
program.
The next slides shows that different phases of compilation can apply
different types of optimizations (some target-independent, some
target-dependent).
By not specifying the order in which subexpressions are evaluated
(left-to-right or right-to-left) a C++ compiler can potentially re-
order the resulting low-level instructions to give a “better” result.

34

The C++ programming language, 3rd edition, (c) 1997, Bjarne Stroustrup, pg 74

The C++ programming language, 3rd edition, (c) 1997, Bjarne Stroustrup, pg 75

The C programming language, (c) 1978, Brian Kernighan and Dennis Ritchie, pg 34

Review

Programming Language
Grammar Fragment

<program> -> <stmt-list>
<stmt-list> -> <stmt> | <stmt> ; <stmt-list>
<stmt> -> <var> = <expr>
<var> -> a | b | c | d
<expr> -> <term> + <term> | <term> - <term>
<term> -> <var> | const

Notes:
<var> is defined in the grammar
const is not defined in the grammar

rightmost derivation

derivations of
a = b + const

leftmost derivation

<program> => <stmt-list>
 => <stmt>
 => <var> = <expr>
 => a = <expr>
 => a = <term> + <term>
 => a = <var> + <term>
 => a = b + <term>
 => a = b + const

<program> => <stmt-list>
 => <stmt>
 => <var> = <expr>
 => <var> = <term> + <term>
 => <var> = <term> + const
 => <var> = <var> + const
 => <var> = b + const
 => a = b + const

<program> -> <stmt-list>
<stmt-list> -> <stmt> | <stmt> ; <stmt-list>
<stmt> -> <var> = <expr>
<var> -> a | b | c | d
<expr> -> <term> + <term> | <term> - <term>
<term> -> <var> | const

grammar

Parse tree
<program>

<stmt-list>

<stmt>

 <var> = <expr>

 a <term> + <term>

 <var> const

 b Sam
e p

ars
e t

ree

reg
ard

les
s o

f

de
riv

ati
on

Parse trees and compilation

A compiler builds a parse tree for a program
(or for different parts of a program)
If the compiler cannot build a well-formed
parse tree from a given input, it reports a
compilation error
The parse tree serves as the basis for
semantic interpretation/translation of the
program.

Example
2+5*3
 exp

 / | \
 exp + term

 | / | \
 term term * const

 | | |
 const const 3

| |
2 5

Programming Language
Grammar Fragment

<program> -> <stmt-list>
<stmt-list> -> <stmt> | <stmt> ; <stmt-list>
<stmt> -> <var> = <expr>
<var> -> a | b | c | d
<expr> -> <term> + <term> | <term> - <term>
<term> -> <var> | const

Notes:
<var> is defined in the grammar
const is not defined in the grammar

A leftmost derivation of
a = b + const

<program> => <stmt-list>
=> <stmt>
=> <var> = <expr>
=> a = <expr>
=> a = <term> + <term>
=> a = <var> + <term>
=> a = b + <term>
=> a = b + const

Parse tree
<program>

<stmt-list>

<stmt>

 <var> = <expr>

 a <term> + <term>

 <var> const

 b

Parse trees and compilation

A compiler builds a parse tree for a program
(or for different parts of a program)
If the compiler cannot build a well-formed
parse tree from a given input, it reports a
compilation error
The parse tree serves as the basis for
semantic interpretation/translation of the
program.

Ambiguity

Ambiguity in grammars

A grammar is ambiguous if and only if it
generates a sentential form that has two
or more distinct parse trees.
Operator precedence and operator
associativity are two examples of ways in
which a grammar can provide unambiguous
interpretation.

Operator precedence ambiguity

The following grammar is ambiguous:

<expr> -> <expr> <op> <expr> | const
<op> -> - | /

The grammar treats the two operators, '-' and
'/', equivalently

26

An ambiguous grammar
for arithmetic expressions

<expr> -> <expr> <op> <expr> | const
<op> -> / | -

<expr>

<expr> <expr>

<expr> <expr>

<expr>

<expr> <expr>

<expr> <expr>

<op>

<op>

<op>

<op>

const const const const const const- -/ /

<op>

Disambiguating the grammar

This grammar (fragment) is unambiguous:

<expr> -> <expr> - <term> | <term>
<term> -> <term> / const | const

The grammar treats the two operators, '-' and '/',
differently.

In this grammar, '/' has higher precedence than
'-'. Within a given subtree, deeper nodes are
evaluated before shallower notes.

28

Disambiguating the grammar
• If we use the parse tree to indicate precedence levels of the

operators, we can remove the ambiguity.
• The following rules give / a higher precedence than -

<expr> -> <expr> - <term> | <term>
<term> -> <term> / const | const

<expr>

<expr> <term>

<term> <term>

const const

const/

-

30

Derivation of
2+5*3

using C grammar

<expression>

<conditional-expression>

<assignment-expression>

<logical-OR-expression>

<inclusive-OR-expression>

<AND-expression>

<logical-AND-expression>

<exclusive-OR-expression>

<equality-expression>

<relational-expression>

<shift-expression>

<additive-expression>

<additive-expression> + <multiplicative-expression>

<multiplicative-expression>

<cast-expression>

<unary-expression>

<postfix-expression>

<primary-expression>

<constant>

2

<multiplicative-expression> <cast-expression>

<unary-expression>

<postfix-expression>

<primary-expression>

<constant>

3

<cast-expression>

<unary-expression>

<postfix-expression>

<primary-expression>

<constant>

5

*

31

Recursion and parentheses

• To generate 2+3*4 or 3*4+2, the parse tree is built
so that + is higher in the tree than *.

• To force an addition to be done prior to a
multiplication we must use parentheses, as in
(2+3)*4.

• Grammar captures this in the recursive case of an
expression, as in the following grammar fragment:

<expr> à <expr> + <term> | <term>
<term> à <term> * <factor> | <factor>
<factor> à <variable> | <constant> | “(” <expr> “)”

RL ⊆ CFL
Given a regular language L we can always construct a
context free grammar G such that L = 𝓛(G).

For every regular language L there is an NFA M = (S,∑,𝛅,F,s0)
such that L = 𝓛(M).

Build G = (N,T,P,S0) as follows:

N = { Ns | s ∈ S }

T = { t | t ∈ ∑ }

If 𝛅(i,a)=j, then add Ni → a Nj to P

If i ∈ F, then add Ni → 𝜀 to P

S0 = Nso

(a|b)*abb

G = ({A0, A1, A2, A3}, {a, b}, {A0 → a A0,
A0 → b A0, A0 → a A1, A1 → b A2, A2 → b A3,
A3 → 𝜀}, A0 }

0 1 2 3
a b b

a

b

RL ⊊ CFL
Show that not all CF languages are
regular.

To do this we only need to
demonstrate that there exists a CFL
that is not regular.

Consider L = { anbn | n ≥ 1 }

Claim: L ∈ CFL, L ∉ RL

RL ⊊ CFL
Proof (sketch):

L ∈ CFL: S → aSb | ab

L ∉ RL (by contradiction):

Assume L is regular. In this case there exists a DFA
D=(N,∑,𝛅,F,s0) such that 𝓛(D) = L.

Let k = |N|. Consider aibi, where i>k.

Suppose 𝛅(s0, ai) = sr. Since i>k, not all of the states between
s0 and sr are distinct. Hence, there are v and w, 0 ≤ v < w ≤ k
such that sv = sw. In other words, there is a loop.

This DFA can certainly recognize aibi but it can also
recognize ajbi, where i ≠ j, by following the loop.

"REGULAR GRAMMARS CANNOT COUNT"

Relevance?
Nested '{' and '}'

public class Foo {
 public static void main(String[] args) {
 for (int i=0; i<args.length; i++) {
 if (args[I].length() < 3) { … }

else { … }
 }

 }
}

Context Free Grammars
and parsing

O(n3) algorithms to parse any CFG
exist

Programming language constructs
can generally be parsed in O(n)

Top-down &
bottom-up

A top-down parser builds a parse tree from
root to the leaves

easier to construct by hand

A bottom-up parser builds a parse tree from
leaves to root

Handles a larger class of grammars

tools (yacc/bison) build bottom-up parsers

Our presentation
First top-down, then bottom-up

Present top-down parsing first.

Introduce necessary vocabulary and
data structures.

Move on to bottom-up parsing
second.

vocab: look-ahead
The current symbol being scanned
in the input is called the lookahead
symbol.

token token token token token token

PARSER

Top-down parsing

Start from grammar's start symbol

Build parse tree so its yield matches
input

predictive parsing: a simple form of
recursive descent parsing

Basic idea:
try to build a derivation

S =>* input
S =>* 𝛼

 …?…

 =>* input
...?...

S

input

𝛼

If 𝛼∈(NUT)* then FIRST(𝛼) is "the set of
terminals that appear as the first symbols of one
or more strings of terminals generated from
𝛼." [p. 64]

Ex: If A -> a 𝛽 then FIRST(A) = {a}

Ex. If A -> a 𝛽 | B then FIRST(A) = {a} ∪ FIRST(B)

FIRST(𝛼)

FIRST(𝛼)

First sets are considered when there
are two (or more) productions to
expand A ∈ N: A -> 𝛼 | 𝛽

Predictive parsing requires that
FIRST(𝛼) ∩ FIRST(𝛽) = ∅

𝜀 productions

If lookahead symbol does not match first set,
use 𝜀 production not to advance lookahead
symbol but instead "discard" non-terminal:

optexpt -> expr | 𝜀

"While parsing optexpr, if the lookahead
symbol is not in FIRST(expr), then the 𝜀
production is used" [p. 66]

Left recursion
Grammars with left recursion are
problematic for top-down parsers, as
they lead to infinite regress.

Left recursion example

Grammar:

expr -> expr + term | term

term -> id

FIRST sets for rule
alternatives are not disjoint:

FIRST(expr) = id

FIRST(term) = id

expr

+ termexpr

+ termexpr

+ term

term

expr

Left recursion example

Grammar:

expr -> expr + term | term

term -> id

FIRST sets for rule
alternatives are not disjoint:

FIRST(expr) = id

FIRST(term) = id

expr

+ termexpr

+ termexpr

+ term

term

𝛽 A𝛼 A𝛼 A𝛼

expr

𝛽A 𝛼

Rewriting grammar to
remove left recursion

expr rule is of form A -> A 𝛼 | 𝛽

Rewrite as two rules

A -> 𝛽 R

R -> 𝛼 R | 𝜀

Back to example

Grammar is re-
written as

expr -> term R

R -> + term R | 𝜀

expr

R

+ term

term

𝛽 𝛼 𝛼 𝛼

R

+ term R

+ term

𝜀

R

Ambiguity

A grammar G is ambiguous if ∃ 𝛔 ∈ 𝓛(G)
that has two or more distinct parse trees.

Example - dangling 'else':

if <expr> then if <expr> then <stmt> else <stmt>

if <expr> then { if <expr> then <stmt> } else <stmt>

if <expr> then { if <expr> then <stmt> else <stmt> }

dangling else resolution

usually resolved so else matches closest if-
then

we can re-write grammar to force this
interpretation (ms = matched statement, os =
open statement)

<stmt> -> <ms> | <os>

<ms> -> if <expr> then <ms> else <ms> | …

<os> -> if <expr> then <stmt> | if <expr> then <ms> else <os>

