CSE443
 Compilers

Dr. Carl Alphonce alphonceebuffalo.edu 343 Davis Hall

Phases of
a

compiler

Syntactic structure

Left factoring

- If two (or more) rules share a prefix then their FIRST sets do not distinguish between rule alternatives.
- If there is a choice point later in the rule, rewrite rule by factoring common prefix
- Example: rewrite

$$
A \rightarrow \alpha \beta_{1} \mid \alpha \beta_{2}
$$

- as

$$
\begin{aligned}
& A \rightarrow \alpha A^{\prime} \\
& A^{\prime} \rightarrow \beta_{1} \mid \beta_{2}
\end{aligned}
$$

Predictive parsing:

 a special case of recursive-descent parsing that does not require backtracking```
Each non-kerminal A \in N has an associated procedure:
void A() {
 choose an A-produckion A }->\mp@subsup{X}{1}{}\mp@subsup{X}{2}{}\ldots\mp@subsup{X}{k}{
 for (i=1 to k) {
 if (xi
 call xi()
 }
 else if (xi = current inpul symbol) {
 advance input to next symbol
 }
 else error
 }
}
```


## Predictive parsing:

a special case of recursive-descent parsing that does not require backtracking

Each non-terminal $A \in N$ has an associated procedure: void $A()$ \{
choose an $A$-production $A \rightarrow X_{1} X_{2} \ldots X_{K}$ for $(i=1$ to $k)$ \{
if $(x i \in N)$ \{ call $\times i()$
\}
else if ( $x i=$ current input symbol) \{ advance input to next symbol \}
else error
\}

There is non-determinism in choice of production. If "wrong" choice is made the parser will need to revisit its choice by backtracking.

A predictive parser can always make the correct choice here.

FIRST (X)

- if $X \in T$ then $\operatorname{FIRST}(X)=\{X\}$
- if $X \in N$ and $x \rightarrow y_{1} y_{2} \ldots y_{k} \in P$ for $k \geq 1$, then
- add $a \in T$ to FIRST (X) if $\exists i$ s.E. $a \in \operatorname{FIRST}\left(Y_{i}\right)$ and $\varepsilon \in \operatorname{FIRST}\left(Y_{j}\right) \forall j<i\left(\right.$ ie. $\left.Y_{1} y_{2} \ldots Y_{i-1} \Rightarrow^{*} \varepsilon\right)$
- if $\varepsilon \in \operatorname{FIRST}\left(Y_{j}\right) \forall j<k$ add $\varepsilon$ to $\operatorname{FIRST}(X)$
- if $X \rightarrow \varepsilon \in P$, then add $\varepsilon$ to FIRST (X)

FOLLOW $(x)$

- Place \$ in FOLLOW(S), where $S$ is the start symbol ( $\$$ is an end marker)
- if $A \rightarrow \alpha B \beta \in P$, then $\operatorname{FIRST}(\beta)-\{\varepsilon\}$ is in $F O L$ LOW $(B)$
- if $A \rightarrow \alpha B \in P$ or $A \rightarrow \alpha B \beta \in P$ where $\varepsilon \in \operatorname{FIRST}(\beta)$, Chen everything in FOLLOW (A) is in FOLLOW (B)

Table-driven predictive parsing Algorithm 4.32 (p.224)

- INPUT: Grammar $G=(N, T, P, S)$
- OUTPUT: Parsing table M
- For each production $A \rightarrow \alpha$ of $G$ :

1. For each terminal $a \in \operatorname{FIRST}(\alpha)$, add $A \rightarrow \alpha$ to $M[A, a]$
2. If $\varepsilon \in \operatorname{FIRST}(\alpha)$, then for each terminal $b$ in FOLLOW $(A)$, add $A \rightarrow \alpha$ to $M[A, B]$
3. If $\varepsilon \in \operatorname{FIRST}(\alpha)$ and $\$ \in \operatorname{FOLLOW}(A)$, add $A \rightarrow \alpha$ to $M[A, \$]$
