
CSE443
Compilers
Dr. Carl Alphonce

alphonce@buffalo.edu
343 Davis Hall

Team
status updates

"How does a shift-reduce parser know when
to shift and when to reduce?" [p 242]

"…by maintaining states to keep track of
where we are in a parse."

Each state is a set of items.

An item is a grammar rule annotated with
a dot, •, somewhere on the RHS.

Items

Rules and items

A -> X Y Z

A -> • X Y Z

A -> X • Y Z

A -> X Y • Z

A -> X Y Z •

The • shows where in a rule we
might be during a parse.

A -> 𝜀

A -> •

Building the finite control
for a bottom-up parser

Build a finite state machine, whose
states are sets of items

Build a table (M) incorporating
shift/reduce decisions

Augment grammar
Given a grammar

G = (N,T,P,S)

we augment to a grammar

G' = (N∪{S'},T,P∪{S'->S},S'), where S'∉N

G' has exactly one rule with S' on left.

We need two operations to
build our finite state machine

CLOSURE(I)

GOTO(I,X)

CLOSURE(I)
I is a set of items

CLOSURE(I) fixed point construction

CLOSURE0(I) = I

repeat {

 CLOSUREi+1(I) =

 CLOSUREi(I) ∪ { B->•𝛾 | A -> 𝛼•B𝛽 ∈ CLOSUREi(I) and B -> 𝛾 ∈ P }

} until CLOSUREi+1(I) = CLOSUREi(I)

CLOSURE(I)

I is a set of items

CLOSURE(I) fixed point construction

CLOSURE0(I) = I

repeat {

CLOSUREi+1(I) = CLOSUREi(I) ∪ { B->•𝛾 | A -> 𝛼•B𝛽 ∈ CLOSUREi(I) and B -> 𝛾
∈ P }

} until CLOSUREi+1(I) = CLOSUREi(I)

Intuition: an item like A -> X • Y Z conveys that we've already
seen X, and we're expecting to see a Y followed by a Z.

The closure of this item is all the other items that are relevant
at this point in the parse.

For example, if Y -> R S T is a production, then Y -> • R S T is
in the closure because if the next thing in the input can derive

from Y, it can derive from R.

GOTO(I,X)
GOTO(I,X) is the closure of the set of items A -> 𝛼X•𝛽 s.t.
A -> 𝛼•X𝛽 ∈ I

GOTO(I,X) construction for G' (figure 4.32):

set-of-items CLOSURE(I) {
J = I
repeat {

for each item A -> 𝛼•B𝛽 ∈ J
 for each production B -> 𝛾 ∈ P
 if B->•𝛾 not already in J
 add B->•𝛾 to J

} until no more items are added to J
return J

}

Building the LR(0) automaton

void items(G') {
C = { CLOSURE({ S' -> •S }) }
repeat {

for each set of items I ∈ C and
for each grammar symbol X ∈ (NUT)
if (GOTO(I,X) is not empty and not already in C)
 add GOTO(I,X) to C

} until no new sets of items are added to C
}

C is a set of sets of items

Example [p 245]

Grammar G Augmented Grammar G'

S' -> E

E -> E + T E -> E + T

E -> T E -> T

T -> T * F T -> T * F

T -> F T -> F

F -> (E) F -> (E)

F -> id F -> id

SET OF ITEMS (I) i CLOSUREi(I)

{ S' -> • E } 0 { S' -> • E }

Compute items(G') S' -> E
E -> E + T

E -> T
T -> T * F

T -> F
F -> (E)
F -> id

Compute items(G')

SET OF ITEMS (I) i CLOSUREi(I)

{ S' -> • E } 0 { S' -> • E }

1 CLOSURE0(I) ∪ { E -> • E + T , E -> • T }

S' -> E
E -> E + T

E -> T
T -> T * F

T -> F
F -> (E)
F -> id

SET OF ITEMS (I) i CLOSUREi(I)

{ S' -> • E } 0 { S' -> • E }

1 CLOSURE0(I) ∪ { E -> • E + T , E -> • T }

2 CLOSURE1(I) ∪ { T -> • T * F , T -> • F }

Compute items(G') S' -> E
E -> E + T

E -> T
T -> T * F

T -> F
F -> (E)
F -> id

SET OF ITEMS (I) i CLOSUREi(I)

{ S' -> • E } 0 { S' -> • E }

1 CLOSURE0(I) ∪ { E -> • E + T , E -> • T }

2 CLOSURE1(I) ∪ { T -> • T * F , T -> • F }

3 CLOSURE2(I) ∪ { F -> • (E) , F -> • id }

Compute items(G') S' -> E
E -> E + T

E -> T
T -> T * F

T -> F
F -> (E)
F -> id

SET OF ITEMS (I) i CLOSUREi(I)

{ S' -> • E } 0 { S' -> • E }

1 CLOSURE0(I) ∪ { E -> • E + T , E -> • T }

2 CLOSURE1(I) ∪ { T -> • T * F , T -> • F }

3 CLOSURE2(I) ∪ { F -> • (E) , F -> • id }

4 CLOSURE3(I) ∪ ∅

Compute items(G') S' -> E
E -> E + T

E -> T
T -> T * F

T -> F
F -> (E)
F -> id

Terminology

Kernel items: S' -> • S and all items
with • not at left edge

Non-kernel items: all items with •
at left edge, except S' -> • S

This gives us the first state of the
finite state machine, I0

I0 S' -> • E

E -> • E + T
E -> • T
T -> • T * F
T -> • F
F -> • (E)
F -> • id

kernel item

non-kernel items
are computed from
CLOSURE(kernel),
and therefore do
not need to be
explicitly stored

Next we compute GOTO(I0,X) ∀ X ∈ N ∪ T
N ∪ T = { E , T , F , + , * , (,) , id }

N.B. - augmented start symbol S' can be ignored

I1 S' -> E •
E -> E • + T

GOTO(I0,E) = CLOSURE({ S' -> E • , E -> E • + T })

= { S' -> E • , E -> E • + T }

only kernel items

N.B. there is no non-terminal
after the •, so no new items are
added by CLOSURE operation

I2 E -> T •
T -> T • * F

GOTO(I0,T) = CLOSURE({ E -> T • , T -> T • * F })

= { E -> T • , T -> T • * F }

only kernel items

N.B. there is no non-terminal
after the •, so no new items are
added by CLOSURE operation

I3 T -> F •

GOTO(I0,F) = CLOSURE({ T -> F • })

= { T -> F • }

only kernel items

N.B. there is no non-terminal
after the •, so no new items are
added by CLOSURE operation

GOTO(I0, '(') = CLOSURE({ F -> (• E) })

= { F -> (• E) } ∪ { E -> • E + T , E -> • T } ∪ { T -> • T
* F , T -> • F } ∪ { F -> • (E) , F -> • id }

N.B. there is a non-terminal after the •, so new items are added by CLOSURE operation

I4 F -> (• E)

E -> • E + T
E -> • T
T -> • T * F
T -> • F
F -> • (E)
F -> • id

kernel item

non-kernel items

I5 F -> id •

GOTO(I0,id) = CLOSURE({ F -> id • })

= { F -> id • }

only kernel items

N.B. there is no non-terminal
after the •, so no new items are
added by CLOSURE operation

GOTO(I0 , ')') = GOTO(I0 , +) = GOTO(I0 , *) = GOTO(I0 , $) = ∅

I0 S' -> • E

E -> • E + T
E -> • T
T -> • T * F
T -> • F
F -> • (E)
F -> • id

I1 S' -> E •
E -> E • + T

I2 E -> T •
T -> T • * F

I3 T -> F • I5 F -> id •

I4 F -> (• E)

E -> • E + T
E -> • T
T -> • T * F
T -> • F
F -> • (E)
F -> • id

E

T

F

(

id

The finite state machine as at this point.

EXERCISE: complete the machine by computing
GOTO(Ik,X) until no new states are added.

I0 S' -> • E

E -> • E + T
E -> • T
T -> • T * F
T -> • F
F -> • (E)
F -> • id

I1 S' -> E •
E -> E • + T

I2 E -> T •
T -> T • * F

I3 T -> F • I5 F -> id •

I4 F -> (• E)

E -> • E + T
E -> • T
T -> • T * F
T -> • F
F -> • (E)
F -> • id

E

T

F

(

id

The finite state machine as at this point.

EXERCISE: complete the machine by computing
GOTO(Ik,X) until no new states are added.

I0 S' -> • E

E -> • E + T
E -> • T
T -> • T * F
T -> • F
F -> • (E)
F -> • id

I1 S' -> E •
E -> E • + T

I2 E -> T •
T -> T • * F

I3 T -> F • I5 F -> id •

I4 F -> (• E)

E -> • E + T
E -> • T
T -> • T * F
T -> • F
F -> • (E)
F -> • id

E

T

F

(

id

Compute GOTO(I1,X) for each X
in { +, *, '(', ')', id, E, T, F, $ }

S' -> E
E -> E + T

E -> T
T -> T * F

T -> F
F -> (E)
F -> id

