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"How does a shift-reduce parser know when 
to shift and when to reduce?" [p 242] 

"…by maintaining states to keep track of 
where we are in a parse." 

Each state is a set of items. 

An item is a grammar rule annotated with 
a dot, •, somewhere on the RHS. 

Items



Rules and items

A -> X Y Z

A -> • X Y Z

A -> X • Y Z

A -> X Y • Z

A -> X Y Z •

The • shows where in a rule we 
might be during a parse.

A -> 𝜀

A -> •



Building the finite control 
for a bottom-up parser

Build a finite state machine, whose 
states are sets of items 

Build a table (M) incorporating 
shift/reduce decisions



Augment grammar
Given a grammar 

G = (N,T,P,S) 

we augment to a grammar 

G' = (N∪{S'},T,P∪{S'->S},S'), where S'∉N 

G' has exactly one rule with S' on left. 



We need two operations to 
build our finite state machine

CLOSURE(I) 

GOTO(I,X)



CLOSURE(I)
I is a set of items 

CLOSURE(I) fixed point construction 

CLOSURE0(I) = I 

repeat { 

  CLOSUREi+1(I) =  

        CLOSUREi(I) ∪ { B->•𝛾 | A -> 𝛼•B𝛽 ∈ CLOSUREi(I) and B -> 𝛾 ∈ P } 

} until CLOSUREi+1(I) = CLOSUREi(I)



CLOSURE(I)

I is a set of items 

CLOSURE(I) fixed point construction 

CLOSURE0(I) = I 

repeat { 

CLOSUREi+1(I) = CLOSUREi(I) ∪ { B->•𝛾 | A -> 𝛼•B𝛽 ∈ CLOSUREi(I) and B -> 𝛾 
∈ P } 

} until CLOSUREi+1(I) = CLOSUREi(I)

Intuition: an item like A -> X • Y Z conveys that we've already 
seen X, and we're expecting to see a Y followed by a Z. 

The closure of this item is all the other items that are relevant 
at this point in the parse. 

For example, if Y -> R S T is a production, then Y -> • R S T is 
in the closure because if the next thing in the input can derive 

from Y, it can derive from R.



GOTO(I,X)
GOTO(I,X) is the closure of the set of items A -> 𝛼X•𝛽 s.t.     
A -> 𝛼•X𝛽 ∈ I 

GOTO(I,X) construction for G' (figure 4.32): 

set-of-items CLOSURE(I) { 
J = I 
repeat { 

for each item A -> 𝛼•B𝛽 ∈ J 
    for each production B -> 𝛾 ∈ P 
        if B->•𝛾 not already in J 
            add B->•𝛾 to J 

} until no more items are added to J 
return J 

}



Building the LR(0) automaton

void items(G') { 
C = { CLOSURE( { S' -> •S } ) } 
repeat { 

for each set of items I ∈ C and 
for each grammar symbol X ∈ (NUT) 
if ( GOTO(I,X) is not empty and not already in C ) 
   add GOTO(I,X) to C 

} until no new sets of items are added to C 
}

C is a set of sets of items



Example [p 245]

Grammar G Augmented Grammar G'

S' -> E

E -> E + T E -> E + T

E -> T E -> T

T -> T * F T -> T * F

T -> F T -> F

F -> ( E ) F -> ( E )

F -> id F -> id



SET OF ITEMS (I) i CLOSUREi(I)

{ S' -> • E } 0 { S' -> • E }

Compute items(G') S' -> E 
E -> E + T 

E -> T 
T -> T * F 

T -> F 
F -> ( E ) 
F -> id



Compute items(G')

SET OF ITEMS (I) i CLOSUREi(I)

{ S' -> • E } 0 { S' -> • E }

1 CLOSURE0(I) ∪ { E -> • E + T , E -> • T }

S' -> E 
E -> E + T 

E -> T 
T -> T * F 

T -> F 
F -> ( E ) 
F -> id



SET OF ITEMS (I) i CLOSUREi(I)

{ S' -> • E } 0 { S' -> • E }

1 CLOSURE0(I) ∪ { E -> • E + T , E -> • T }

2 CLOSURE1(I) ∪ { T -> • T * F , T -> • F }

Compute items(G') S' -> E 
E -> E + T 

E -> T 
T -> T * F 

T -> F 
F -> ( E ) 
F -> id



SET OF ITEMS (I) i CLOSUREi(I)

{ S' -> • E } 0 { S' -> • E }

1 CLOSURE0(I) ∪ { E -> • E + T , E -> • T }

2 CLOSURE1(I) ∪ { T -> • T * F , T -> • F }

3 CLOSURE2(I) ∪ { F -> • ( E ) , F -> • id }

Compute items(G') S' -> E 
E -> E + T 

E -> T 
T -> T * F 

T -> F 
F -> ( E ) 
F -> id



SET OF ITEMS (I) i CLOSUREi(I)

{ S' -> • E } 0 { S' -> • E }

1 CLOSURE0(I) ∪ { E -> • E + T , E -> • T }

2 CLOSURE1(I) ∪ { T -> • T * F , T -> • F }

3 CLOSURE2(I) ∪ { F -> • ( E ) , F -> • id }

4 CLOSURE3(I) ∪ ∅

Compute items(G') S' -> E 
E -> E + T 

E -> T 
T -> T * F 

T -> F 
F -> ( E ) 
F -> id



Terminology

Kernel items: S' -> • S and all items 
with • not at left edge 

Non-kernel items: all items with • 
at left edge, except S' -> • S



This gives us the first state of the  
finite state machine, I0

I0 S' -> • E  

E -> • E + T 
E -> • T 
T -> • T * F 
T -> • F 
F -> • ( E ) 
F -> • id

kernel item 

non-kernel items 
are computed from  
CLOSURE(kernel), 
and therefore do 
not need to be 
explicitly stored



Next we compute GOTO(I0,X) ∀ X ∈ N ∪ T  
N ∪ T = { E , T , F , + , * , ( , ) , id } 

N.B. - augmented start symbol S' can be ignored

I1 S' -> E •  
E -> E • + T

GOTO(I0,E) = CLOSURE( { S' -> E • , E -> E • + T } )  

= { S' -> E • , E -> E • + T }

only kernel items

N.B. there is no non-terminal 
after the •, so no new items are 
added by CLOSURE operation



I2 E -> T • 
T -> T • * F

GOTO(I0,T) = CLOSURE( { E -> T • , T -> T • * F } )  

= { E -> T • , T -> T • * F }

only kernel items

N.B. there is no non-terminal 
after the •, so no new items are 
added by CLOSURE operation



I3 T -> F •

GOTO(I0,F) = CLOSURE( { T -> F • } )  

= { T -> F • }

only kernel items

N.B. there is no non-terminal 
after the •, so no new items are 
added by CLOSURE operation



GOTO(I0, '(' ) = CLOSURE( { F -> ( • E ) } )  

= { F -> ( • E ) } ∪ { E -> • E + T , E -> • T } ∪ { T -> • T 
* F , T -> • F } ∪ { F -> • ( E ) , F -> • id } 

N.B. there is a non-terminal after the •, so new items are added by CLOSURE operation

I4 F -> ( • E )  

E -> • E + T 
E -> • T 
T -> • T * F 
T -> • F 
F -> • ( E ) 
F -> • id

kernel item 

non-kernel items



I5 F -> id •

GOTO(I0,id) = CLOSURE( { F -> id • } )  

= { F -> id • }

only kernel items

N.B. there is no non-terminal 
after the •, so no new items are 
added by CLOSURE operation

GOTO( I0 , ')' ) = GOTO( I0 , + ) = GOTO( I0 , * ) = GOTO( I0 , $ ) = ∅



I0 S' -> • E  

E -> • E + T 
E -> • T 
T -> • T * F 
T -> • F 
F -> • ( E ) 
F -> • id

I1 S' -> E •  
E -> E • + T

I2 E -> T • 
T -> T • * F

I3 T -> F • I5 F -> id •

I4 F -> ( • E )  

E -> • E + T 
E -> • T 
T -> • T * F 
T -> • F 
F -> • ( E ) 
F -> • id

E

T

F

(

id

The finite state machine as at this point. 

EXERCISE: complete the machine by computing 
GOTO(Ik,X) until no new states are added.



I0 S' -> • E  

E -> • E + T 
E -> • T 
T -> • T * F 
T -> • F 
F -> • ( E ) 
F -> • id

I1 S' -> E •  
E -> E • + T

I2 E -> T • 
T -> T • * F

I3 T -> F • I5 F -> id •

I4 F -> ( • E )  

E -> • E + T 
E -> • T 
T -> • T * F 
T -> • F 
F -> • ( E ) 
F -> • id

E

T

F

(

id

The finite state machine as at this point. 

EXERCISE: complete the machine by computing 
GOTO(Ik,X) until no new states are added.



I0 S' -> • E  

E -> • E + T 
E -> • T 
T -> • T * F 
T -> • F 
F -> • ( E ) 
F -> • id

I1 S' -> E •  
E -> E • + T

I2 E -> T • 
T -> T • * F

I3 T -> F • I5 F -> id •

I4 F -> ( • E )  

E -> • E + T 
E -> • T 
T -> • T * F 
T -> • F 
F -> • ( E ) 
F -> • id

E

T

F

(

id

Compute GOTO(I1,X) for each X 
in { +, *, '(',  ')', id, E, T, F, $ }

S' -> E 
E -> E + T 

E -> T 
T -> T * F 

T -> F 
F -> ( E ) 
F -> id


