CSE443
 Compilers

Dr. Carl Alphonce alphonceebuffalo.edu 343 Davis Hall

Team stalus updates

Items

- "How does a shift-reduce parser know when to shift and when to reduce?" [p 242]
- "...by maintaining states to keep track of where we are in a parse."
- Each state is a set of items.
- An item is a grammar rule annotated with a dot, somewhere on the RHS.

Rules and items
$A \rightarrow X Y Z$
$A \rightarrow \odot X Y Z$
$A \rightarrow X \bullet Y Z$
$A \rightarrow X Y \bullet Z$
$A \rightarrow X Y Z \bullet$
\square

The shows where in a rule we might be during a parse.

Building the finite control for a boklom-up parser

- Build a finite state machine, whose states are sets of items
- Build a table (M) incorporating shife/reduce decisions

Augment grammar

Given a grammar

$$
G=(N, T, P, S)
$$

we augment to a grammar

$$
G^{\prime}=\left(N \cup\left\{S^{\prime}\right\}, T, P \cup\left\{S^{\prime} \rightarrow S\right\}, S^{\prime}\right) \text {, where } S^{\prime} \notin N
$$

G' has exactly one rule with S' on left.

We need two operations to build our finite slake machine
CLOSURE (I)

$$
\operatorname{GOTO}(I, X)
$$

CLOSURE (I)

- I is a set of items
- CLOSURE (I) fixed point construction

```
CLOSUREO(I) = I
repeat {
    CLOSURE
```



```
    } untiL CLOSUREEi+1 (I) = CLOSUREi(I)
```

CLOSURE(I)

- I is a set of items
- CLOSURE(I) fixed point construction

Intuition: an item like $A \rightarrow X$ - Y Z conveys that we've already seen X, and we're expecting to see a Y followed by a Z.

The closure of this item is all the other items that are relevant at this point in the parse.

For example, if $y \rightarrow R S T$ is a production, then $y \rightarrow R S T$ is in the closure because if the next thing in the input can derive from Y, it can derive from R.
$\operatorname{GOTO}(I, X)$

- $\operatorname{coto}(I, X)$ is the closure of the set of items $A \rightarrow \alpha X \oplus \beta$ s.t.

$$
A \rightarrow \alpha \otimes X \beta \in I
$$

- $\operatorname{GOTO}(I, X)$ construction for $G^{\prime}($ figure 4.32):
set-of-items CLOSURE (I) \{
$J=I$
repeat \{
for each item $A \rightarrow \alpha \odot B \beta \in J$
for each production $B \rightarrow \gamma \in P$
if $B \rightarrow \odot \gamma$ not already in J add $\mathrm{B} \rightarrow$ or to J
\} until no more items are added to J return J
\}

Building the LR(0) automaton
void ikems(C) \{
$C=\left\{\operatorname{CLOSURE}\left(\left\{S^{\prime} \rightarrow \odot S\right\}\right)\right\}$
c is a set of sets of items
repeat \{
for each set of items $I \in C$ and
for each grammar symbol $X \in$ (NUT)
if (GOTO(I,X) is not empty and not already in C) add $\operatorname{GOTO}(I, X)$ to C
\} until no new sets of items are added to C \}

Example $[p$ 245]

Compute items(ϵ^{\prime})

$$
\begin{gathered}
E \rightarrow E+T \\
E \rightarrow T \\
T \rightarrow T * F \\
T \rightarrow F \\
F \rightarrow(E) \\
F \rightarrow i d
\end{gathered}
$$

SET OF ITEMS (I)	i	CLOSURE (I)
$\left\{S^{\prime} \rightarrow \odot E\right\}$	0	$\left\{S^{\prime} \rightarrow \bullet E\right\}$

Compute items(G^{\prime})

$$
\begin{gathered}
S^{\prime} \rightarrow E \\
E \rightarrow E+T \\
E \rightarrow T \\
T \rightarrow T * F \\
T \rightarrow F \\
F \rightarrow(E) \\
F \rightarrow i d
\end{gathered}
$$

SET OF ITEMS (I)	i	CLOSURE i(I)
$\left\{S^{\prime} \rightarrow \bullet E\right\}$	0	$\left\{S^{\prime} \rightarrow \odot E\right\}$
	1	CLOSUREO(I) $\cup\{E \rightarrow \odot E+T, E \rightarrow \odot T\}$

SET OF ITEMS (I)	i	CLOSURE (I)
$\left\{S^{\prime} \rightarrow \bullet E\right\}$	0	$\left\{S^{\prime} \rightarrow \bullet E\right\}$
	1	$\operatorname{CLOSURE}_{0}(I) \cup\{E \rightarrow \bullet E+T, E \rightarrow \odot T\}$
	2	$\operatorname{CLOSURE}_{1}(I) \cup\{T \rightarrow \odot T * F, T \rightarrow \odot F\}$

Compute items(c')
 $$
\begin{gathered} S \rightarrow E \\ E \rightarrow E+T \\ E \rightarrow T \\ T \rightarrow T * F \\ T \rightarrow F \\ F \rightarrow(E) \\ F \rightarrow i d \end{gathered}
$$

Compute items(c')
 $$
\begin{gathered} S \rightarrow E \\ E \rightarrow E+T \\ E \rightarrow T \\ T \rightarrow T * F \\ T \rightarrow F \\ F \rightarrow(E) \\ F \rightarrow i d \end{gathered}
$$

Terminology

- Kernel items: $S^{\prime} \rightarrow$ © S and all items with e not at left edge
- Non-kernel items: all items with at left edge, except $S^{\prime} \rightarrow$ © S

This gives us the first state of the finite skate machine, Io

Io $S^{\prime} \rightarrow$ kernel item
$E \rightarrow E+T$ non-kernel items
$E \rightarrow \cdot T$
$T \rightarrow T * F$
$T \rightarrow F^{*}$
$F \rightarrow \bullet(E)$
$F \rightarrow$ id
are computed from CLOSURE(kernel), and therefore do not need to be explicitly stored

Next we compute $\operatorname{GOTO}\left(I_{0}, X\right) \forall X \in N \cup T$

$$
N \cup T=\{E, T, F,+, *,(,), i d\}
$$

N.B. - augmented start symbol s' can be ignored

$$
\begin{aligned}
& \operatorname{GOTO}\left(I_{0}, E\right)=\operatorname{CLOSURE}\left(\left\{S^{\prime} \rightarrow E \bullet, E \rightarrow E \bullet+T\right\}\right) \\
& =\left\{S^{\prime} \rightarrow E \cdot E \rightarrow E \cdot+T\right\} \\
& \text { N.B. there is no non-kerminal } \\
& \text { after the , so no new items are } \\
& \text { added by CLOSURE operation }
\end{aligned}
$$

I_{1}

$$
\begin{aligned}
& S^{\prime} \rightarrow E \cdot \\
& E \rightarrow E \cdot+T
\end{aligned}
$$

only kernel items

$$
\begin{aligned}
& C O T O\left(I_{0}, T\right)=\operatorname{CLOSURE}(\{E \rightarrow T \in, T \rightarrow T \bullet * F\}) \\
& =\{E \rightarrow T \in T \rightarrow T \bullet * F\} \begin{array}{l}
\text { N.B. there is no non-terminal } \\
\text { after the } 0, \text { so no new items are } \\
\text { added by CLOSURE operation }
\end{array}
\end{aligned}
$$

I_{2}

$$
\begin{aligned}
& E \rightarrow T \bullet \\
& T \rightarrow T \bullet * F
\end{aligned}
$$

only kernel items

$$
\begin{aligned}
& C O T O\left(I_{0}, F\right)=C L O S U R E(\{T \rightarrow F \in\}) \\
& =\{T \rightarrow\} \quad \begin{array}{l}
\text { CTB. there is no non-terminal } \\
\text { after the so no new items are } \\
\text { added by CLOSURE operation }
\end{array}
\end{aligned}
$$

$$
I_{3}
$$

$T \rightarrow F$. only kernel items
N.B. there is a non-terminal after the so new items are added by CLOSURE operation

$$
\begin{aligned}
& \operatorname{Goto}\left(I_{0},(\cdot)=\operatorname{CLOSURE}(\{F \rightarrow(\delta E)\})\right. \\
& =\{F \rightarrow(\bullet E)\} \cup\{E \rightarrow \bullet E+T, E \rightarrow \bullet T\} \cup\{T \rightarrow \bullet T \\
& * F, T \rightarrow \in F \cup\{F \rightarrow \bullet(E), F \rightarrow \bullet i d\}
\end{aligned}
$$

$$
\begin{aligned}
& I_{4} E \rightarrow(\bullet E) \text { Kernel item } \\
& E \rightarrow E+T \text { non-kernel items } \\
& E \rightarrow \cdot T \\
& T \rightarrow \oplus T * F \\
& T \rightarrow \cdot F \\
& F \rightarrow \text { (} E \text {) } \\
& F \rightarrow \text { id }
\end{aligned}
$$

$$
\operatorname{coto}\left(I_{0}, i d\right)=\operatorname{CLOSURE}(\{F \rightarrow i d \bullet\})
$$

$$
=\{F \rightarrow i d \bullet\}
$$

N.B. there is no non-terminal after the so no new items are added by CLOSURE operation
$I_{5} F \rightarrow$ id
only kernel items

$$
\left.\operatorname{coto}\left(I_{0},{ }^{\prime}\right)^{\prime}\right)=\operatorname{coto}\left(I_{0},+\right)=\operatorname{coto}\left(I_{0}, *\right)=\operatorname{coto}\left(I_{0}, \$\right)=\varnothing
$$

