CSE443
 Compilers

Dr. Carl Alphonce alphonceebuffalo.edu 343 Davis Hall

Building the finite control for a boklom-up parser

- Build a finite state machine, whose states are sets of items
- Build a table (M) incorporating shife/reduce decisions

Augment grammar

Given a grammar

$$
G=(N, T, P, S)
$$

we augment to a grammar

$$
G^{\prime}=\left(N \cup\left\{S^{\prime}\right\}, T, P \cup\left\{S^{\prime} \rightarrow S\right\}, S^{\prime}\right) \text {, where } S^{\prime} \notin N
$$

G' has exactly one rule with S' on left.

CLOSURE (I)

- I is a set of items
- CLOSURE (I) fixed point construction

```
CLOSUREO(I) = I
repeat {
    CLOSURE
```



```
    } untiL CLOSUREEi+1 (I) = CLOSUREi(I)
```

$\operatorname{GOTO}(I, X)$

- $\operatorname{coto}(I, X)$ is the closure of the set of items $A \rightarrow \alpha X \oplus \beta$ s.t.

$$
A \rightarrow \alpha \otimes X \beta \in I
$$

- $\operatorname{GOTO}(I, X)$ construction for $G^{\prime}($ figure 4.32):
set-of-items CLOSURE (I) \{
$J=I$
repeat \{
for each item $A \rightarrow \alpha \odot B \beta \in J$
for each production $B \rightarrow \gamma \in P$
if $B \rightarrow \odot \gamma$ not already in J add $\mathrm{B} \rightarrow$ or to J
\} until no more items are added to J return J
\}

Building the LR(0) automaton
void ikems(C) \{
$C=\left\{\operatorname{CLOSURE}\left(\left\{S^{\prime} \rightarrow \odot S\right\}\right)\right\}$
c is a set of sets of items
repeat \{
for each set of items $I \in C$ and
for each grammar symbol $X \in$ (NUT)
if (GOTO(I,X) is not empty and not already in C) add $\operatorname{GOTO}(I, X)$ to C
\} until no new sets of items are added to C \}

$$
\begin{array}{lr}
\operatorname{coto}\left(I_{1}, \phi\right)=\operatorname{accept} & T \rightarrow T \\
\operatorname{coto}\left(I_{1},+\right)=\operatorname{CloSURE}(\{E \rightarrow E+\bullet T\}) & T \rightarrow(\\
=\{E \rightarrow E+\bullet T, T \rightarrow \bullet T * F, T \rightarrow \bullet F, F \rightarrow \bullet(E), F \rightarrow \bullet i d\}
\end{array}
$$

I6

$$
\begin{aligned}
& E \rightarrow E+\bullet T \\
& T \rightarrow \cdot T * F \\
& T \rightarrow \cdot F \\
& F \rightarrow \cdot(E) \\
& F \rightarrow \cdot i d
\end{aligned}
$$

$\operatorname{coto}\left(I_{1},(')=\operatorname{coto}\left(I_{1},\right)^{\prime}\right)=\operatorname{coto}\left(I_{1}, *\right)=\operatorname{coto}\left(I_{1}\right.$, id $)=$ $\operatorname{coto}\left(I_{1}, E\right)=\operatorname{coto}\left(I_{1}, T\right)=\operatorname{coto}\left(I_{1}, F\right)=\varnothing$

Io

$F \rightarrow$ id

$$
\begin{gathered}
E \rightarrow E+T \\
E \rightarrow T \\
T \rightarrow T * F \\
T \rightarrow F \\
F \rightarrow(E) \\
F \rightarrow i d
\end{gathered}
$$

$$
\begin{gathered}
S^{\prime} \rightarrow E \\
E \rightarrow E+T \\
E \rightarrow T \\
T \rightarrow T * F \\
T \rightarrow F \\
F \rightarrow(E) \\
F \rightarrow i d
\end{gathered}
$$

$$
I_{2}\left[\begin{array}{llll}
E \rightarrow T & & \\
T \rightarrow T & \bullet & * F
\end{array}\right]
$$

Compute GOTO $\left(I_{2}, X\right)$ for each X in $\left\{+,{ }^{*}\right.$, ' $^{\prime}$ ' ' ' '', id, E $\left., T, F, \$\right\}$

$$
\begin{aligned}
& \operatorname{GOTO}\left(I_{2}, *\right)=\operatorname{CLOSURE}(\{T \rightarrow T * \bullet F\}) \\
& =\{T \rightarrow T * \bullet F, F \rightarrow \bullet(E), F \rightarrow \bullet i d\}
\end{aligned}
$$

$$
I_{7}\left[\begin{array}{l}
T \rightarrow T * \bullet F \\
\hline F \rightarrow \bullet(E) \\
F \rightarrow \bullet \text { id }
\end{array}\right.
$$

$$
\begin{aligned}
& \operatorname{GOTO}\left(I_{2}, '(')=\operatorname{coto}\left(I_{2},\right)^{\prime}\right)=\operatorname{GOTO}\left(I_{2},+\right)=\operatorname{GOTO}\left(I_{2}, \text { id }\right)= \\
& \operatorname{coto}\left(I_{2}, E\right)=\operatorname{coto}\left(I_{2}, T\right)=\operatorname{coto}\left(I_{2}, F\right)=\operatorname{coto}\left(I_{2}, \$\right)=\varnothing
\end{aligned}
$$

Io

$$
T \rightarrow T * F
$$

$$
T \rightarrow F
$$

$$
F \rightarrow(E)
$$

$$
F \rightarrow \bullet i d
$$

$$
\begin{gathered}
I_{3} \mid T \rightarrow \\
S^{\prime} \rightarrow E \\
E \rightarrow E+T \\
E \rightarrow T \\
T \rightarrow T * F \\
T \rightarrow F \\
F \rightarrow(E) \\
F \rightarrow i d
\end{gathered}
$$

$$
\begin{gathered}
S^{\prime} \rightarrow E \\
E \rightarrow E+T \\
E \rightarrow T \\
T \rightarrow T * F \\
T \rightarrow F \\
F \rightarrow(E) \\
F \rightarrow i d
\end{gathered}
$$

Compute $\operatorname{GOTO}\left(I_{3}, X\right)$ for each X in $\left\{+, *, '^{\prime}, '\right.$ ' ', id, $\left.E, T, F, \$\right\}$

$$
\begin{aligned}
& \operatorname{coto}\left(I_{3}, E\right)=\operatorname{GOTO}\left(I_{3}, T\right)=\operatorname{coto}\left(I_{3}, F\right)=\operatorname{Coto}\left(I_{3},+\right)= \\
& \left.\operatorname{coto}\left(I_{3}, *\right)=\operatorname{coto}\left(I_{3}, \prime^{\prime}\right)=\operatorname{coto}\left(I_{3},{ }^{\prime}\right)\right)=\operatorname{coto}\left(I_{3}, i d\right)= \\
& \operatorname{coto}\left(I_{3}, \phi\right)=\varnothing
\end{aligned}
$$

Io

$$
T \rightarrow T * F
$$

$$
T \rightarrow F
$$

$$
F \rightarrow(E)
$$

$$
F \rightarrow \bullet i d
$$

$$
\begin{gathered}
I_{3} \mid T \rightarrow \\
S^{\prime} \rightarrow E \\
E \rightarrow E+T \\
E \rightarrow T \\
T \rightarrow T * F \\
T \rightarrow F \\
F \rightarrow(E) \\
F \rightarrow i d
\end{gathered}
$$

Compute $\operatorname{COTO}\left(I_{4}, X\right)$ for each X in $\{+, *,(', ')$ ', id, $E, T, F, \$\}$

$$
\begin{gathered}
T \rightarrow T * F \\
T \rightarrow F \\
F \rightarrow(E) \\
F \rightarrow i d
\end{gathered}
$$

$$
\begin{aligned}
& I_{4} \mid F \rightarrow(\bullet E) \\
& E \rightarrow E+T \\
& E \rightarrow \cdot T \\
& T \rightarrow 0 T * F \\
& T \rightarrow \cdot F \\
& F \rightarrow \bullet(E) \\
& F \rightarrow \text { id }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{COTO}(I 4, E)= \\
& \operatorname{CLOSURE}(\{F \rightarrow(E \bullet), E \rightarrow E \bullet+T\})= \\
& \{F \rightarrow(E \bullet), E \rightarrow E \bullet+T\} \quad I_{8} \begin{array}{l}
E \rightarrow E \bullet+T \\
\\
\{\rightarrow(E \bullet)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{GOTO}\left(I_{4}, T\right)=\operatorname{CLOSURE}(\{E \rightarrow T \bullet, T \rightarrow T \bullet * F\})=\{E \rightarrow T \bullet, \\
& T \rightarrow T \bullet * F\}=I_{2} \\
& \operatorname{GOTO}\left(I_{4}, F\right)=\operatorname{CLOSURE}(\{T \rightarrow F \bullet\})=I_{3} \\
& \operatorname{cotO}\left(I_{4}, \prime(\prime)=\operatorname{CLOSURE}(\{F \rightarrow(\bullet E)\})=I_{7}\right. \\
& \operatorname{coto}\left(I_{4}, i d\right)=\operatorname{CLOSURE}(\{F \rightarrow i d \bullet\})=I_{6} \\
& \left.\operatorname{coto}\left(I_{4}, '\right)^{\prime}\right)=\operatorname{coto}\left(I_{4},+\right)=\operatorname{coto}\left(I_{4}, *\right)=\operatorname{coto}\left(I_{4}, \$\right)=\varnothing
\end{aligned}
$$

Io

$T \rightarrow T_{*} F$
$T \rightarrow{ }^{T}$
$F \rightarrow \odot(E)$
$F \rightarrow$ id

$$
I_{3}
$$

$$
\begin{gathered}
S^{\prime} \rightarrow E \\
E \rightarrow E+T \\
E \rightarrow T \\
T \rightarrow T * F \\
T \rightarrow F \\
F \rightarrow(E) \\
F \rightarrow \text { id }
\end{gathered}
$$

$$
\begin{gathered}
S^{\prime} \rightarrow E \\
E \rightarrow E+T \\
E \rightarrow T \\
T \rightarrow T * F \\
T \rightarrow F \\
F \rightarrow(E) \\
F \rightarrow i d
\end{gathered}
$$

$I_{5} F \rightarrow i d \cdot$

Compute GOTO($\left.I_{s}, X\right)$ for each X in $\{+$, , ' '(', ')', id, E, T, F, \$\}

$$
\begin{aligned}
& \operatorname{COTO}\left(I_{s}, E\right)=\operatorname{COTO}\left(I_{6}, T\right)=\operatorname{COTO}\left(I_{\sigma}, F\right)=\operatorname{COTO}\left(I_{5},+\right)= \\
& \operatorname{coto}\left(I_{5}, *\right)=\operatorname{coto}\left(I_{5},{ }^{\prime}(\prime)=\operatorname{coto}\left(I_{5},{ }^{\prime}\right)^{\prime}\right)=\operatorname{coto}\left(I_{s}, i d\right)= \\
& \operatorname{coto}\left(I_{s}, \phi\right)=\varnothing
\end{aligned}
$$

Io

$T \rightarrow T_{*} F$
$T \rightarrow{ }^{T}$
$F \rightarrow \odot(E)$
$F \rightarrow$ id

$$
I_{3}
$$

$$
\begin{gathered}
S^{\prime} \rightarrow E \\
E \rightarrow E+T \\
E \rightarrow T \\
T \rightarrow T * F \\
T \rightarrow F \\
F \rightarrow(E) \\
F \rightarrow \text { id }
\end{gathered}
$$

$S \rightarrow E$
$E \rightarrow E+T$
$E \rightarrow T$
$T \rightarrow T * F$
$T \rightarrow F$
$F \rightarrow(E)$
$F \rightarrow i d$

Compute GOTO $\left(I_{6}, X\right)$ for each X in $\left\{+,{ }^{*}, '^{\prime}\left('^{\prime}\right)^{\prime}\right.$ ' id $\left., E, T, F, \$\right\}$

$$
\begin{aligned}
& \operatorname{GOTO}\left(I_{6}, T\right)=\operatorname{CLOSURE}(\{E \rightarrow E+T \bullet, T \rightarrow T \bullet * F\})= \\
& \{E \rightarrow E+T \bullet T \rightarrow T \bullet * F\} \\
& \operatorname{GOTO}\left(I_{6}, F\right)=\operatorname{CLOSURE}(\{T \rightarrow F \bullet\})=I_{3} \\
& \operatorname{cotO}\left(I_{6},()=\operatorname{CLOSURE}(\{F \rightarrow(\bullet E)\})=I_{4}\right. \\
& \operatorname{cotO}\left(I_{6}, i d\right)=\operatorname{CLOSURE}(\{F \rightarrow i d \bullet\})=I_{6}
\end{aligned}
$$

$$
\operatorname{coto}\left(I_{6}, E\right)=\operatorname{coto}\left(I_{6},{ }^{\prime}\right)=\operatorname{coto}\left(I_{6},+\right)=\operatorname{coto}\left(I_{6}, *\right)=
$$

$$
\operatorname{coto}\left(I_{6}, \$\right)=\varnothing
$$

$$
\begin{gathered}
S \rightarrow E \\
E \rightarrow E+T \\
E \rightarrow T \\
T \rightarrow T * F \\
T \rightarrow F \\
F \rightarrow(E) \\
F \rightarrow i d
\end{gathered}
$$

Compute GOTO($\left.I_{7}, X\right)$ for each X in $\{+$, , ' '(', ' ')', id, E, T, F, \$\}
$\operatorname{coto}\left(I_{7}, F\right)=\operatorname{CLOSURE}(\{T \rightarrow T * F \bullet\})=\{T \rightarrow T * F \bullet\}_{T \rightarrow T * F}^{E \rightarrow T}$
$\operatorname{GOTO}\left(I_{7}, \prime^{\prime}\right)=\operatorname{CLOSURE}(\{F \rightarrow(\bullet E)\})=I_{4}$
$\operatorname{cotO}\left(I_{7}, i d\right)=\operatorname{CLOSURE}(\{F \rightarrow i d \cdot\})=I_{6}$

$\left.\operatorname{coto}\left(I_{7}, E\right)=\operatorname{coto}\left(I_{7}, T\right)=\operatorname{coto}\left(I_{7},\right)^{\prime}\right)=\operatorname{coto}\left(I_{7},+\right)=\operatorname{coto}\left(I_{7}, *\right)=$ $\operatorname{coto}\left(I_{7}, \$\right)=\varnothing$

$$
\begin{gathered}
S \rightarrow E \\
E \rightarrow E+T \\
E \rightarrow T \\
T \rightarrow T * F \\
T \rightarrow F \\
F \rightarrow(E) \\
F \rightarrow i d
\end{gathered}
$$

Compute $\operatorname{GOTO}\left(I_{8}, X\right)$ for each X in $\left.\left\{+, *, '^{\prime}, '\right)^{\prime}, i d, E, T, F, \$\right\}$

I_{8}
 $$
\begin{aligned} & E \rightarrow E \bullet+T \\ & F \rightarrow(E \bullet) \end{aligned}
$$

$$
\begin{aligned}
& \operatorname{COTO}\left(I_{8} ; \prime\right)=\operatorname{CLOSURE}(\{F \rightarrow(E) \bullet\})=\{F \rightarrow(E) \bullet\} \\
& E \rightarrow T \\
& T \rightarrow T * F \\
& T \rightarrow F \\
& \operatorname{COTO}\left(I_{8,}+\right)=\operatorname{CLOSURE}(\{E \rightarrow E+0 T\})=I_{6}
\end{aligned}
$$

$$
\underset{ }{F \rightarrow(E) \bullet}
$$

$$
\begin{aligned}
& \operatorname{coto}\left(I_{8}, '()=\operatorname{coto}\left(I_{8}, *\right)=\operatorname{coto}\left(I_{8}, E\right)=\operatorname{coto}\left(I_{8}, T\right)=\operatorname{coto}\left(I_{8}, F\right)=\right. \\
& \operatorname{coto}\left(I_{8}, \Phi\right)=\operatorname{coto}\left(I_{8}, i d\right)=\varnothing
\end{aligned}
$$

$$
\begin{gathered}
S \rightarrow E \\
E \rightarrow E+T \\
E \rightarrow T \\
T \rightarrow T * F \\
T \rightarrow F \\
F \rightarrow(E) \\
F \rightarrow i d
\end{gathered}
$$

Compute GOTO $\left(I_{g}, X\right)$ for each X in $\left\{+,{ }^{*},{ }^{\prime}(', ')\right.$ ' id, $\left.E, T, F, \$\right\}$

$\operatorname{COTO}\left(I_{9}, *\right)=\operatorname{CLOSURE}(\{T \rightarrow T * \cdot F\})=I_{7}$

```
\operatorname{coto}(\mp@subsup{I}{9}{\prime},'(')=\operatorname{GOTO}(\mp@subsup{I}{9}{},'}\mp@subsup{)}{}{\prime})=\operatorname{GOTO}(\mp@subsup{I}{9}{},+)=\operatorname{GOTO}(\mp@subsup{I}{9}{},id)=\operatorname{coto(}\mp@subsup{I}{9}{},$)
\operatorname { c o t o ( ~ I g , ~ E ~ ) ~ = ~ G o t o ( ~ I g , T ~ T ~ = ~ G O T O ( I g , ~ F ~ I ~ = ~ = ~ }
```


$$
\begin{gathered}
S \rightarrow E \\
E \rightarrow E+T \\
E \rightarrow T \\
T \rightarrow T * F \\
T \rightarrow F \\
F \rightarrow(E) \\
F \rightarrow i d
\end{gathered}
$$

Compute $\operatorname{GOTO}\left(I_{1_{0}}, X\right)$ for each X in $\left\{+,{ }^{*}\right.$, ' $^{\prime}, '^{\prime}$ ', id, E $\left., T, F, \$\right\}$

$$
\begin{aligned}
& \operatorname{coto}\left(I_{10,}, E\right)=\operatorname{coto}\left(I_{10}, T\right)=\operatorname{coto}\left(I_{10}, F\right)=\operatorname{coto}\left(I_{10,+}\right)= \\
& \operatorname{coto}\left(I_{10}, *\right)=\operatorname{coto}\left(I_{10},\left(^{\prime}\right)=\operatorname{coto}\left(I_{10},{ }^{\prime}\right)\right)=\operatorname{coto}\left(I_{10, i d}\right)= \\
& \operatorname{coto}\left(I_{10}, \phi\right)=\varnothing
\end{aligned}
$$

$$
\begin{gathered}
S \rightarrow E \\
E \rightarrow E+T \\
E \rightarrow T \\
T \rightarrow T * F \\
T \rightarrow F \\
F \rightarrow(E) \\
F \rightarrow i d
\end{gathered}
$$

Compute GOTO $\left(I_{11}, X\right)$ for each X

$$
\mathrm{I}_{11} F \rightarrow(E) \bullet
$$ in $\{+$, , ' '(', ')', id, E, T, F, \$\}

$$
\begin{aligned}
& \operatorname{coto}\left(I_{11}, E\right)=\operatorname{coto}\left(I_{11}, T\right)=\operatorname{coto}\left(I_{11}, F\right)=\operatorname{coto}\left(I_{11},+\right)= \\
& \left.\operatorname{coto}\left(I_{11}, *\right)=\operatorname{coto}\left(I_{11},{ }^{\prime}\right)=\operatorname{coto}\left(I_{11},{ }^{\prime}\right)\right)=\operatorname{coto}\left(I_{11}, i d\right)= \\
& \operatorname{coto}\left(I_{11}, \phi\right)=\varnothing
\end{aligned}
$$

Phases of
a compiler

Initial state of the parser
(top of stack is current state in LR(0) automata) modified from figure $4.36[p, 248]$

Initial state of the parser
 (top of stack is current state in $L R(0)$ automata) modified from figure $4.36[p .248]$

Later lectures
$L R(k)$

- LR(K) parser
- L \Rightarrow Left-ko-right scanning of input
- $R \Rightarrow$ righimost derivalion in reverse
- $k \Rightarrow$ number of lookahead symbols
- k is Eypically o or 1
- LR $\Rightarrow L R(1)$
$\operatorname{LR}(K)$
- LR (K) parser
- L \Rightarrow Left-ko-right scanning of input
- $R \Rightarrow$ rightmost derivation in reverse
- $k \Rightarrow$ number of lookahead symbols
- K is typically \circ or 1

Look ahead here refers to

- LR $\Rightarrow \operatorname{LR}(1)$ how many input symbols can be consulted during parsing
[pg. 242]
- "The LR-parsing method is the most general noubacktracking shift-reduce parsing method known"
- "[The LR-parsing method] can be implemented as efficiently as other [...] shift-reduce methods"
- "An LR parser can detect a syntactic error as soon as it is possible to do so on a left-to-right scan of the input."
- "The class of grammars that can be parsed using LR methods is a proper superset of the class of grammars that can be parsed with predictive or LL methods."

