
CSE443 
Compilers
Dr. Carl Alphonce 

alphonce@buffalo.edu 
343 Davis Hall 



symbol tables

One table per scope 

Solid interface functions (constructors, 
accessors and mutators) 

Good encapsulation and information hiding 

Flexible design



/****************************************************************************** 
 Types 
 ******************************************************************************/ 

struct SymbolTable; 
struct SymbolTableList; 
struct SymbolTableEntry; 

/* Every symbol table entry must denote either a TYPE, a FUNCTION, or a 
   VARIABLE. 

   The type EntryCategory is used to express the kind of symbol table entry: 

     TYPE is used for entries that denote types 
     FUNCTION is used for entries that denote functions 
     VARIABLE is used for entries that denote variables 
*/ 
enum EntryCategory { TYPE, FUNCTION, VARIABLE }; 

/* Every type belongs to one of the following categories: 

   PRIMITIVE is used for primitive types (such as integer, real, character, 
   Boolean) 

   PRODUCT is used for Cartesian products of types (i.e. structs/records) 

   SUM is used for union (or sum) types; alpha does not currently support 
   this category of type. 

   MAPPING is used for mapping types: function types and array types 

   UNDEFINED is used for expressions whose type is ill-defined 
*/ 
enum TypeCategory { UNDEFINED, MAPPING, PRIMITIVE, PRODUCT, SUM }; 



/****************************************************************************** 
 Constructors 
   These functions build new values of the type indicated by the return type 
   specification. 
 ******************************************************************************/ 

/* Build and return a pointer to a new SymbolTable.  Every symbol table has a 
   unique parent, except the top-level symbol table.  The top-level symbol 
   table is created by the call: 
    
       newSymbolTable(NULL) 
        
*/ 
struct SymbolTable* newSymbolTable(struct SymbolTabe* parent); 

/* Build and return a pointer to a new SymbolTableList.  The SymbolTableList 
   has one member, table. 
 */ 
struct SymbolTableList* newSymbolTableList(struct SymbolTable* table); 

/* Build and return a pointer to a new SymbolTableEntry, of the indicated 
   category. 
 */ 
struct SymbolTableEntry* newSymbolTableEntry(enum EntryCategory category); 



/****************************************************************************** 
 Mutators 
******************************************************************************/ 

void addEntryToSymbolTable(struct SymbolTable* table, struct SymbolTableEntry* entry); 

void addChildToSymbolTable(struct SymbolTable* parent, struct SymbolTable* child); 



/****************************************************************************** 
 Accessors 
 ******************************************************************************/ 

struct SymbolTable* getSymbolTable(void); 

struct SymbolTable* getParent(struct SymbolTable* table); 

struct SymbolTableList* getChildren(struct SymbolTable* table); 

struct SymbolTableList* getRestOfChildren(struct SymbolTableList* list); 

struct SymbolTable* getFirstOfChildren(struct SymbolTableList* list); 

struct SymbolTableEntry* getEntryInSymbolTable(struct SymbolTable* table, char* name, bool ancestorSearch); 

char * getName(struct SymbolTableEntry* entry); 

enum EntryCategory getEntryCategory(struct SymbolTableEntry* entry); 

enum TypeCategory getTypeCategory(struct SymbolTableEntry* entry); 

struct SymbolTableEntry* getType(struct SymbolTableEntry* entry); 

bool hasInit(struct SymbolTableEntry* entry); 

int_least32_t makeSymbolTableID(int lineNumber, int colNumber); 

struct SymbolTable* getSymbolTable(struct SymbolTableEntry* entry); 



Phases of 
a 

compiler

Figure 1.7, 
page 5 of text

Syntactic 
structure



Example 4.51 [p. 260]
Grammar from example 4.48: 

S -> L = R | R 
L -> *R | id 

R -> L



Example 4.51 [p. 260]
Grammar from example 4.48: 

S -> L = R | R 
L -> *R | id 

R -> L

"[This grammar] is 
not ambiguous.  This 
shift/reduce conflict 
arises [because] SLR 
parser construction 
method [does not] 
remember enough left 
context…"  

[p. 255]



Viable prefix
"Why can LR(0) automata be used to make 
shift-reduce decisions?  The LR(0) automaton 
for a grammar characterizes the strings of 
grammar symbols that can appear on the 
stack… The stack contents must be a prefix 
of a right-sentential form.  If the stack 
holds 𝛼 and the rest of the input is x, then a 
sequence of reductions will take 𝛼x to S.  In 
terms of derivations, S⇒rm* 𝛼x." [p. 256]



Viable prefix
"Not all prefixes of right-sentential 
forms can appear on the stack…since 
the parser must not shift past the 
handle." [p. 256] 

E ⇒rm* F * id ⇒rm ( E ) * id 



Viable prefix
"Not all prefixes of right-sentential 
forms can appear on the stack…since 
the parser must not shift past the 
handle." [p. 256] 

E ⇒rm* F * id ⇒rm ( E ) * id 

( E ) is a handle of 
F -> ( E )



Viable prefix 
(parser configurations shown)

( $ , '(' id ')' * id $ ) 
( $ '(' , id ')' * id $ ) 
( $ '(' id , ')' * id $ ) 
( $ '(' F , ')' * id $ ) 
( $ '(' T , ')' * id $ ) 
( $ '(' E , ')' * id $ ) 
( $ '(' E ')' , * id $ ) 
( $ F , * id $ ) 
( $ T , * id $ ) 
( $ T * , id $ ) 
etc.

Cannot shift '*' here, because 
'(' E ')' 

is a handle.



Viable prefix
"The prefixes of right sentential forms 
that can appear on the stack of a 
shift-reduce parser are called viable 
prefixes." [p. 256] 



Viable prefix
( $ , '(' id ')' * id $ ) 
( $ '(' , id ')' * id $ ) 
( $ '(' id , ')' * id $ ) 
( $ '(' F , ')' * id $ ) 
( $ '(' T , ')' * id $ ) 
( $ '(' E , ')' * id $ ) 
( $ '(' E ')' , * id $ ) 
( $ F , * id $ ) 
( $ T , * id $ ) 
( $ T * , id $ ) 
etc.

Cannot shift '*' here, because 
'(' E ')' 

is a handle.

Therefore 
'(' E ')' * 

is not a viable prefix.



LR(1) items
"…in the SLR method, state I calls for 
reduction by A→𝛼 if the set of items Ii 
contains item [A→𝛼•] and input 
symbol a is in FOLLOW(A)." [p. 260]



LR(1) items
"In some situations, however, when 
state I appears on top of the stack the 
viable prefix 𝛽𝛼 on the stack is such 
that 𝛽A cannot be followed by a in any 
right-sentential form." [p. 260]



Example 4.51 [p. 260]
Grammar from example 4.48: 
S -> L = R | R 
L -> *R | id 
R -> L 

State I2 from figure 4.39 
S -> L • = R 
R -> L • 

"Consider the set of items I2.  The first item in this set makes ACTION[2,=] be 'shift 
6'.  Since FOLLOW(R) contains = […] the second item sets ACTION[2,=] to reduce R 
-> L." [p. 255] 

"…the SLR parser calls for reduction by R -> L in state 2 with = as the next input 
(the shift action is also called for …).  However, there is no right-sentential form of 
the grammar … that begins R = … . Thus state 2, which is the state corresponding to 
viable prefix L only, should not really call for reduction of that L to R." [p. 260]

See section 4.7.5 (p. 270) for more discussion of this example.



LR(1) items

"By splitting states when necessary, we can 
arrange to have each state … indicate exactly 
which input symbols can follow a handle 𝛼 for 
which there is a possible reduction to A." [p. 260] 

"The general form of an item becomes 
[ A -> 𝛼 • 𝛽, a] 

where A -> 𝛼𝛽 is a production and a is a 
terminal or … $." [p. 260]



LR(1) items

"The lookahead has no effect in an item 
of the form [ A -> 𝛼 • 𝛽, a], where 𝛽 is 
not 𝜀, but an item of the form [ A -> 𝛼 •, 
a] calls for reduction by A -> 𝛼 only if 
the next input symbol is a. […] The set 
of such a's will always be a subset of 
FOLLOW(A), but it could be a proper 
subset …" [p. 260]



LALR (lookahead LR)

"SLR and LALR tables … always have the same 
number of states." [p. 266] 

Idea: merge sets of LR(1) items with the same 
core. 

Cannot introduce Shift/Reduce conflicts, may 
introduce Reduce/Reduce conflicts. 

Bison and YACC produce LALR parsers.



Phases of 
a 

compiler

Figure 1.6, 
page 5 of text

Semantic 
analysis



Semantics

• “Semantics” has to do with the meaning of a 
program. 

• We will consider two types of semantics: 

– Static semantics: semantics which can be enforced 
at compile-time. 

– Dynamic semantics: semantics which express the 
run-time meaning of programs.



Static semantics

• Semantic checking which can be done at 
compile-time 

• Type-compatibility is a prime example 
– int can be assigned to double (type coercion) 
– double cannot be assigned to int without explicit 

type cast 

• Type-compatibility can be captured in grammar, 
but only at expense of larger, more complex 
grammar



Ex: adding type rules in grammar
• Must introduce new non-terminals which encode types: 
• Instead of a generic grammar rule for assignment: 

– <stmt>  <var> ‘=’ <expr> ‘;’ 

• we need multiple rules: 
– <stmt>  <doubleVar> ‘=’ <intExpr> | <doubleExpr> ‘;’ 
– <stmt>  <intVar> ‘=’ <intExpr> ‘;’ 

• Of course, such rules need to handle all the relevant 
type possibilities (e.g. byte, char, short, int, long, 
float and double).



Alternative: attribute grammars

• Attribute grammars provide a neater way of 
encoding such information. 

• Each syntactic rule of the grammar can be 
decorated with: 
– a set of semantic rules/functions 
– a set of semantic predicates



Attributes
• We can associate with each symbol X of the 

grammar a set of attributes A(X).  Attributes are 
partitioned into: 

synthesized attributes S(X) – pass info up parse tree 

inherited attributes I(X) – pass info down parse tree



Semantic rules/functions
• We can associate with each rule R of the grammar a set 

of semantic functions. 

• For rule   X0  X1 X2 … Xn 
– synthesized attribute of LHS: 

S(X0) = f(A(X1), A(X2), …, A(Xn)) 

– inherited attribute of RHS member: 
for 1<=j<=n, I(Xj) = f(A(X0),…,A(Xj-1)) 
(note that dependence is on siblings to left only)

X0

X1 X2 … XN

X0

X1 … Xj-1 Xj…



Predicates
• We can associate with each rule R of the grammar 

a set of semantic predicates. 

• Boolean expression involving the attributes and a 
set of attribute values 

• If true, node is ok 

• If false, node violates a semantic rule


