CSE4-4-3
Com p tlers
Dr. Carl Ai.pkom':@.

alphonce@buffalo.edu
343 Davis Hall

svmbat tables

One kable per scope

Solid interface functions (constructors,
accessors and mubators)

Good encapsulation and information hiding

Flexible desigin

/ kskokskokskskokskok skok sk skok sk ok sk sk ok sk ok sk sk sk sk ok sk sk sk sk ok sk ok sk sk ok sk ok sk sk sk skok sk sk sk skok sk ok sk sk ok sk ok sk sk sk sk ok sk sk sk skok sk sk sk sk ok sk ok sk sk ok skok
Types
skskokskskok sk skoksk skok sk sk sk skok sk sk sksk sk sk sk sk skok sk ok sk skok sk sk skk sk sk sk skok sk sk skok sk sk sk sk sk sk sk skok sk sk skok skok sk skok skok skok /

struct SymbolTable;
struct SymbolTablelList;
struct SymbolTableEntry;

/* Every symbol table entry must denote either a TYPE, a FUNCTION, or a
VARIABLE.

The type EntryCategory is used to express the kind of symbol table entry:
TYPE is used for entries that denote types

FUNCTION is used for entries that denote functions
VARIABLE is used for entries that denote variables

*/
enum EntryCategory { TYPE, FUNCTION, VARIABLE };
/* Every type belongs to one of the following categories:

PRIMITIVE is used for primitive types (such as integer, real, character,
Boolean)

PRODUCT is used for Cartesian products of types (i.e. structs/records)

SUM is used for union (or sum) types; alpha does not currently support
this category of type.

MAPPING is used for mapping types: function types and array types
UNDEFINED is used for expressions whose type is ill-defined

*/
enum TypeCategory { UNDEFINED, MAPPING, PRIMITIVE, PRODUCT, SUM };

[kskokskokskokskokskskskskskskokskokskokskok sk ok sk ok sk kskk sk sk skk sk ok sk sk sk ok sk sk skok sk ok sk ok sk ok sk ok skokskoksksksk sk sk sk sk sksk sk sk sk sk sksk sk ok sk ok sk ok ok
Constructors
These functions build new values of the type indicated by the return type
specification.
skskskskokskokskok sk ok sk sk sk ok sk ok sk ok sk sk sk sk sk sk sk ok sk ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok skok sk ok sk ok skok skokskk sk sk sk sk sk sk sk ok sk ok sk ok sk k /

/* Build and return a pointer to a new SymbolTable. Every symbol table has a
unique parent, except the top-level symbol table. The top-level symbol
table is created by the call:

newSymbolTable (NULL)

*/
struct SymbolTablex newSymbolTable(struct SymbolTabex parent);

/* Build and return a pointer to a new SymbolTableList. The SymbolTablelList
has one member, table.

*/

struct SymbolTablelListx newSymbolTableList(struct SymbolTablex table);

/* Build and return a pointer to a new SymbolTableEntry, of the indicated
category.

*/

struct SymbolTableEntry*x newSymbolTableEntry(enum EntryCategory category);

struct SymbolTablex getSymbolTable(struct SymbolTableEntrysx entry);

- 2e8 Tl T

Phases of
Qa

aompiiﬁ.\“

Flqure 1.7
page § of bext

Svm&aﬁ:&if:

skructkure

Symbol Table

character stream

Y

Lexical Analyzer

token étream

Y

Syntax Analyzer

[
syntax tree

'

Semantic Analyzer

1
syntax tree

Y

Intermediate Code Generator

|
intermediate representation

Machine-Independent
Code Optimizer

|
intermediate representation

Code Generator

|
target-machine code

Y

Machine-Dependent
Code Optimizer

|
target-machine code

Y

Example 481 [p. 260

Grammar from example 4.4%:

S—>L=R|R
L= xR | id
R -» L

Example 4.51 {Fe 603

Grammar from exampi.e 4- 4-2"

S—>L=R|R
L= xR | id
R -» L

Viable prefix

"Why can LR(0) automata be used ko make
shift-reduce decisions? The LR(©) automaton
for a grammar characterizes the strings of
grammar symbols that can appear on the
stack... The stack contents must be a prefix
of a right-sentential form. If the stack
holds a and the rest of the input is x, then o

sequence of reductions will take ax to S, In

terms of derivations, S=rme ax." [p. 266]

Viable prefix

"Not all pre&xes of right-sentential
forms can appear on the stack...since
the parser must not shift past the
handle.” [p. 256]

E =me B *id =20 (E) *id

Viable prefix

"Not all prefixes of right-sentential
forms can appear on the stack...since
the parser must not shift past the
handle.” [p. 256]

E S B xid o250 (£) xid

Viable r@fnx

(Parser «towfugurahahs shown)

, Cid) *id $)
;‘«d>*‘*d$>

k42 V*xid$) Cannot shift '*' here, because

) * t,ci $ Y » ; | s(tg t)t
) J :.,d $) = is a handle,

e e e W W N e

Viable prefix

"The pre&xes of right sentential forms
that can appear on the stack of a
shift-reduce parser are called viable
prefixes.” [p. 266]

P e R R R B o o e R

o
m
O

\;EOL i,e -

1 Lci) * :.,cl $)

LR(1) tkems

"...in the SLR wethod, state I calls for
reduction by A—a if the set of items I

conkains itkem [A—ae] and input
symbol a is in FOLLOW(A)." [p. 260]

LR(1) tkems

"I some situations, however, when
state I appears on top of the stack the
viable prefix fa on the stack is such

that A cannot be followed bv a i any
right-sentential form.” {F"‘ 260]

Example 4.51 [p: 260 |

Grammar from example 4.4%: o S
S—>L=R|R '
L= xR | id

R ->» L

State 12 from fiqure 4.39
S =l =20
R->Le

"Consider the set of ikems I, The first ikem in this set mokes ACTION[2,=] be 'shift
&', Since FOLLOW(R) contains = [...] the second item sekts ACTION[2,=] to reduce R
-» L." [p. 265]

"...the SLR parser calls for reduction b:j R =2 L in state 2 with = as the next input
(Ehe shift action is also called for ...). However, there is no right-sentential form of
the gqrammar ... that begins R = Thus state 2, which is the state corresponding to
viable prefix L only, should not really call for reduction of that L to R." [p. 260]

LR(1Y ikems

"By splitting states when necessary, we can
arrahge to have each state ... indicate exactly
which nput svmbots can follow a handle a for

which there is a possibte reduction to A" [p. 260]]

"The general form of an item becomes
[A->aef o]

where A =» af is a produc&aon and a is a

terminal or ... $." [p. 260]

LR(1Y ikems

"The Llookahead has no effect in an iktem
of the form [A -» a ¢ 3, a], where g is
not ¢, buk an itkem of the form [A => a s,
a] calls for reduction bv A =7 a only 3
the next iv\puﬁ svmbc}t is a. [...] The set
of such a's will always be a subset of
FOLLOW(A), bub it could be a proper
subsek ..." 2 260]]

LALR (lookahead LR)

"SLR and LALR kables ... always have the same
number of states.” [F" 266]

Idea: merqe sets of LR(1) items with the same
core.

Cannot introduce Shift/Reduce conflicts, may
introduce Reduce/Reduce conflicts,

Rison and YACC prodaae LALR parsers.

character stream

Y

Lexical Analyzer

Phases of

|
Q token stream

Y
@0 m F E;i,@_r Syntax Analyzer

synta:ix: tree

Senmankic sl
Semantic Analyzer
&M&i' }SL3 syntaic tree

Symbol Table Intermediate Code Generator

|
intermediate representation

Machine-Independent
Code Optimizer

|
intermediate representation

Code Generator
Loyt ' rget-machine cod
PLQM’.T'Q 1@&; ta get. ma(v: e code

PO\SQ 5 an %Qx& Machine-Dependent

Code Optimizer

|
target-machine code

Y

Semantics

» “Semantics” has to do with the meaning of a
program.

* We will consider two types of semantics:

— Static semantics: semantics which can be enforced
at compile-time.

— Dynamic semantics: semantics which express the
run-time meaning of programs.

Static semantics

» Semantic checking which can be done at
compile-time

* Type-compatiblility is a prime example
— int can be assigned to double (type coercion)

— double cannot be assigned to int without explicit
type cast

» Type-compatibility can be captured in grammar,
but only at expense of larger, more complex
grammar

Ex: adding type rules in grammar

Must introduce new non-terminals which encode types:
Instead of a generic grammar rule for assignment:

- <stmt> 2 <var> ‘=’ <expr> ‘;’

we need multiple rules:

— <stmt> - <doubleVar> ‘=’ <intExpr> | <doubleExpr> ‘';’
— <stmt> - <intVar> ‘=’ <intExpr> ‘;’

Of course, such rules need to handle all the relevant
type possibilities (e.g. byte, char, short, int, long,
float and double).

Alternative: attribute grammars

 Attribute grammars provide a neater way of
encoding such information.

» Each syntactic rule of the grammar can be
decorated with:

— a set of semantic rules/functions
— a set of semantic predicates

Attributes

* We can associate with each symbol X of the
grammar a set of attributes A(X). Attributes are
partitioned into:

synthesized attributes S(X) — pass info up parse tree

inherited attributes |(X) — pass info down parse tree

Semantic rules/functions

* We can associate with each rule R of the grammar a set
of semantic functions.

X0 .
e Forrule X0 - X1 X2 .. Xn .

— synthesized attribute of LHS:
S(X0) = £(A(X1), A(X2), .., A(Xn)) X1l X2 ..

N “

— lnherited attribute of RHS member:
for 1<=j<=n, I(Xj) = £(A(X0),..,A(X3-1))
(note that dependence 1s on siblings to left only)
X0 o,

X1 .. Xi-1 Xi..

Predicates

We can associate with each rule R of the grammar
a set of semantic predicates.

Boolean expression involving the attributes and a
set of attribute values

If true, node Is ok

If false, node violates a semantic rule

