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svmbat tables

One kable per scope

Solid interface functions (constructors,
accessors and mubators)

Good encapsulation and information hiding

Flexible desigin
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struct SymbolTable;
struct SymbolTablelList;
struct SymbolTableEntry;

/* Every symbol table entry must denote either a TYPE, a FUNCTION, or a
VARIABLE.

The type EntryCategory is used to express the kind of symbol table entry:
TYPE is used for entries that denote types

FUNCTION is used for entries that denote functions
VARIABLE is used for entries that denote variables

*/
enum EntryCategory { TYPE, FUNCTION, VARIABLE };
/* Every type belongs to one of the following categories:

PRIMITIVE is used for primitive types (such as integer, real, character,
Boolean)

PRODUCT is used for Cartesian products of types (i.e. structs/records)

SUM is used for union (or sum) types; alpha does not currently support
this category of type.

MAPPING is used for mapping types: function types and array types
UNDEFINED is used for expressions whose type is ill-defined

*/
enum TypeCategory { UNDEFINED, MAPPING, PRIMITIVE, PRODUCT, SUM };
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Constructors
These functions build new values of the type indicated by the return type
specification.
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/* Build and return a pointer to a new SymbolTable. Every symbol table has a
unique parent, except the top-level symbol table. The top-level symbol
table is created by the call:

newSymbolTable (NULL)

*/
struct SymbolTablex newSymbolTable(struct SymbolTabex parent);

/* Build and return a pointer to a new SymbolTableList. The SymbolTablelList
has one member, table.

*/

struct SymbolTablelListx newSymbolTableList(struct SymbolTablex table);

/* Build and return a pointer to a new SymbolTableEntry, of the indicated
category.

*/

struct SymbolTableEntry*x newSymbolTableEntry(enum EntryCategory category);






struct SymbolTablex getSymbolTable(struct SymbolTableEntrysx entry);

- 2e8 Tl T




Phases of
Qa

aompiiﬁ.\“

Flqure 1.7
page § of bext

Svm&aﬁ:&if:

skructkure

Symbol Table

character stream

Y

Lexical Analyzer

token étream

Y

Syntax Analyzer

[
syntax tree

'

Semantic Analyzer

1
syntax tree

Y

Intermediate Code Generator

|
intermediate representation

Machine-Independent
Code Optimizer

|
intermediate representation

Code Generator

|
target-machine code

Y

Machine-Dependent
Code Optimizer

|
target-machine code

Y




Example 481 [p. 260

Grammar from example 4.4%:

S—>L=R|R
L= xR | id
R -» L




Example 4.51 {Fe 603

Grammar from exampi.e 4- 4-2"

S—>L=R|R
L= xR | id
R -» L




Viable prefix

"Why can LR(0) automata be used ko make
shift-reduce decisions? The LR(©) automaton
for a grammar characterizes the strings of
grammar symbols that can appear on the
stack... The stack contents must be a prefix
of a right-sentential form. If the stack
holds a and the rest of the input is x, then o

sequence of reductions will take ax to S, In

terms of derivations, S=rme ax." [p. 266]



Viable prefix

"Not all pre&xes of right-sentential
forms can appear on the stack...since
the parser must not shift past the
handle.” [p. 256 ]
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Viable prefix

"Not all prefixes of right-sentential
forms can appear on the stack...since
the parser must not shift past the
handle.” [p. 256 ]
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Viable prefix

"The pre&xes of right sentential forms
that can appear on the stack of a
shift-reduce parser are called viable
prefixes.” [p. 266]
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LR(1) tkems

"...in the SLR wethod, state I calls for
reduction by A—a if the set of items I

conkains itkem [A—ae] and input
symbol a is in FOLLOW(A)." [p. 260]



LR(1) tkems

"I some situations, however, when
state I appears on top of the stack the
viable prefix fa on the stack is such

that A cannot be followed bv a i any
right-sentential form.” {F"‘ 260 ]



Example 4.51 [ p: 260 |

Grammar from example 4.4%: o S
S—>L=R|R '
L= xR | id

R ->» L

State 12 from fiqure 4.39
S =l =20
R->Le

"Consider the set of ikems I, The first ikem in this set mokes ACTION[2,=] be 'shift
&', Since FOLLOW(R) contains = [...] the second item sekts ACTION[2,=] to reduce R
-» L." [p. 265]

"...the SLR parser calls for reduction b:j R =2 L in state 2 with = as the next input
(Ehe shift action is also called for ...). However, there is no right-sentential form of
the gqrammar ... that begins R = ... . Thus state 2, which is the state corresponding to
viable prefix L only, should not really call for reduction of that L to R." [p. 260]




LR(1Y ikems

"By splitting states when necessary, we can
arrahge to have each state ... indicate exactly
which nput svmbots can follow a handle a for

which there is a possibte reduction to A" [p. 260]]

"The general form of an item becomes
[A->aef o]

where A =» af is a produc&aon and a is a

terminal or ... $." [p. 260]



LR(1Y ikems

"The Llookahead has no effect in an iktem
of the form [ A -» a ¢ 3, a], where g is
not ¢, buk an itkem of the form [ A => a s,
a] calls for reduction bv A =7 a only 3
the next iv\puﬁ svmbc}t is a. [...] The set
of such a's will always be a subset of
FOLLOW(A), bub it could be a proper
subsek ..." 2 260]]



LALR (lookahead LR)

"SLR and LALR kables ... always have the same
number of states.” [F" 266 ]

Idea: merqe sets of LR(1) items with the same
core.

Cannot introduce Shift/Reduce conflicts, may
introduce Reduce/Reduce conflicts,

Rison and YACC prodaae LALR parsers.
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Semantics

» “Semantics” has to do with the meaning of a
program.

* We will consider two types of semantics:

— Static semantics: semantics which can be enforced
at compile-time.

— Dynamic semantics: semantics which express the
run-time meaning of programs.



Static semantics

» Semantic checking which can be done at
compile-time

* Type-compatiblility is a prime example
— int can be assigned to double (type coercion)

— double cannot be assigned to int without explicit
type cast

» Type-compatibility can be captured in grammar,
but only at expense of larger, more complex
grammar



Ex: adding type rules in grammar

Must introduce new non-terminals which encode types:
Instead of a generic grammar rule for assignment:

- <stmt> 2 <var> ‘=’ <expr> ‘;’

we need multiple rules:

— <stmt> - <doubleVar> ‘=’ <intExpr> | <doubleExpr> ‘';’
— <stmt> - <intVar> ‘=’ <intExpr> ‘;’

Of course, such rules need to handle all the relevant
type possibilities (e.g. byte, char, short, int, long,
float and double).



Alternative: attribute grammars

 Attribute grammars provide a neater way of
encoding such information.

» Each syntactic rule of the grammar can be
decorated with:

— a set of semantic rules/functions
— a set of semantic predicates




Attributes

* We can associate with each symbol X of the
grammar a set of attributes A(X). Attributes are
partitioned into:

synthesized attributes S(X) — pass info up parse tree

inherited attributes |(X) — pass info down parse tree



Semantic rules/functions

* We can associate with each rule R of the grammar a set
of semantic functions.

X0 .
e Forrule X0 - X1 X2 .. Xn .

— synthesized attribute of LHS:
S(X0) = £(A(X1), A(X2), .., A(Xn)) X1l X2 ..

N “

— lnherited attribute of RHS member:
for 1<=j<=n, I(Xj) = £(A(X0),..,A(X3-1))
(note that dependence 1s on siblings to left only)
X0 o,

X1 .. Xi-1 Xi..



Predicates

We can associate with each rule R of the grammar
a set of semantic predicates.

Boolean expression involving the attributes and a
set of attribute values

If true, node Is ok

If false, node violates a semantic rule



