CSE4-4-3
Com p tlers
Dr. Carl Ai.pkom':@.

alphonce@buffalo.edu
343 Davis Hall



Example

<assign> 2 <var> = <expr> _.

Start with a production of the grammar

Syntactic rule
Semantic rule/function
Semantic predicate




Example

<assign> 2 <var> = <expr>
<expr>.expType

Assoclate an abbtribute with a non-
terminal, <expr>, on the right of the
pradu&&ow expType (the expected type
of the express£0m§

Syntactic rule
Semantic rule/function
Semantic predicate




Example

<assign> 2 <var> = <expr>
<expr>.expType <& <var>.actType

Assign to <exprr.expT gp@. the value of
avarr.actType, the actual bype of the
variable {the type the variable was
d@.ﬂ?&red as).

Syntactic rule
Semantic rule/function
Semantic predicate




Example

<assign> 2 <var> = <expr>
<expr>.expType <& <var>.actType

In other words, we expect the expression
whose value is being assiqned to a
variable to have the same type as the
variable.

Syntactic rule
Semantic rule/function
Semantic predicate




Example

<assign> 2 <var> = <expr>
<expr>.expType <& <var>.actType

<expr> 2 <var>[2] + <var>[3]

Ancther gramm production

Syntactic rule
Semantic rule/function
Semantic predicate




Example

Syntactic rule
<assign> =2 <var> = <expr> Semantic rule/function

<expr>.expType & <var>.actType Semantic predicate

<expr> 2 <var>[2] + <var>[3]
<expr>.actType ¢ if (var[2].actType = int) and
(var[3] .actType = int)
then int
else real

This production has a wmore involved
semantic rule: it handles Emﬂ@. coercion,
This rule assumes that there are cmtv o
numeric types (int and real) and that ink
can be coerced ko real.



Example

Syntactic rule
<assign> =2 <var> = <expr> Semantic rule/function

<expr>.expType & <var>.actType Semantic predicate

<expr> 2 <var>[2] + <var>[3]
<expr>.actType ¢ if (var[2].actType = int) and
(var[3] .actType = int)
then int
else real
<expr>.actType == <expr>.expType f

Here is our first semantic predicate,
which enforces a type-checking
constraint: the actual type of <expr> must
mabch the expected bype (from elsewhere
in the bree)



Example

_ Syntactic rule
<assign> > <var> = <expr> Semantic rule/function
<expr>.expType & <var>.actType Semantic predicate

<expr> 2 <var>[2] + <var>[3]
<expr>.actType ¢ if (var[2].actType = int) and
(var[3] .actType = int)
then int
else real
<expr>.actType == <expr>.expType

<expr> 2 <var>

4o Anocther
<expr>.actType <& <var>.actType % | . .
<expr>.actType == <expr>.expType P‘“Odt&,ﬁ&b(}@f\; ML&k
a semantic rule
and a semantic
Fv‘l"éCﬁ,ﬁ&%Qq




Example

Syntactic rule
<assign> =2 <var> = <expr> Semantic rule/function

<expr>.expType & <var>.actType Semantic predicate

<expr> 2 <var>[2] + <var>[3]
<expr>.actType ¢ if (var[2].actType = int) and
(var[3] .actType = int)
then int
else real

<expr>.actType == <expr>.expType Tkig Séﬂﬂ&ﬂ&i& r%t&
cexprs S <var> says that the type
<expr>.actType <& <var>.actType Oﬂf &M Eﬁd@_h&i}%&ﬁr Emg

<expr>.actType == <expr>.expType .
determined bv
<var> 2 A | B | C

<var>.actType <& lookUp (<va‘string) LOOR“‘MS MP D&S

bupe it Ehe sumbol
¥ table. /




All the productions, rules and predicates

<assign> 2 <var> = <expr>
<expr>.expType <& <var>.actType

<expr> 2 <var>[2] + <var>[3]
<expr>.actType <& if (var[2].actType = int) and
(var[3] .actType = int)
then int
else real
<expr>.actType == <expr>.expType

<expr> > <var>

<expr>.actType <& <var>.actType
<expr>.actType == <expr>.expType

Syntactic rule

<var> 2> A | B | C Semantic rule/function
<var>.actType <& 1lookUp(<var>.string) Semantic predicate




Leb's see how Ehese rules
WOTk LA Ferox:ﬁ&e.!

<assign>
In this axamptﬁ A and B are
both of type nt.
<expr=
<var> <var>[2] | <var>[3]
Suppose:
A — A + B Ais int
B is int




Effects of the semantic

<assign>
J rules s showi U red.

expected
type = N actual
v | int <expr> type=
) Int
A
actual type = int
., <var> <var>{2] | <var>[3]
actual actual
. type = type =
actual type = int int int Suppose:
A = A + B Ais int
Bis int




This is the same axamyi&
skructure, but now assume A

< ign>
asslg is of type real and B is of
%3y@. ik,
<expr=
<var> <var>[2] | <var>[3]
Suppose:
A = A + B Alis real
B is int




This is the same axam!ze{@.
skructure, but now assume A

<assign>
assign is of type real and B is of

%tﬁ@; tnk,
ted
teyxppeeg © < _actual
v | real <expr> type=
. real
A
actual type = real
., <var> <var>{2] | <var>[3]
actual actual
type = type =
actual type = real real int Suppose:
A = A + B A'is real
B is int




This is the same axamyie
skructure, but now assume A

<assign>
assign is of type real and B is of

%W@; ik,
expected . .
type = _actual | type coercion during ‘+’:
¥ | real <expr> type = |int> real
) real

actual type = real

\ <var> <var>{Z]
actual actual
type = type =
actual type = real real int Suppose:
A = A + B A'is real
B is int




actual type = real

<assign>

N <var=

actual type = real

A

This is the same axamyie
skructure, but now assume A
is of type real and B is of
%W@; tk,

expected fLal
type = < > fycpgaz Grenerate code to do
real expr e .
v /
<var>f2] | <var>[3]

actual actual
type = type =
I’ea| |nt Suppose

A + B Ais real

B is int




This is the same axamyi&
skructure, but now assume A

< ian>
assIy is of type nt and B is of
%aﬂm real.
<expr=
<var> <var>[2] | <var>[3]
Suppose:
A — A + B A is int
B is real




This is the same axam!ze{@.
skructure, but now assume A

<assign>
assIign is of type it and B is of

%oﬂm real.
ted
teyxppeeg © < _actual
v |int <expr= type =
. real
A
actual type = int
., <var> <var3f2] | <var>[3]
actual actual
| type = type =
actual type = Int int real SUppOSG:
A = A + B Ais int
B is real




Houston, we have a problem!
Semantic predicate is false.

<assign>

expected
type = _actual
v |int <expr= type =
. real
A
actual type = int
., <var> <var>{2] | <var>[3]
actual actual
| type = type =
actual type = int int real Suppose:
A = A + B Ais int
B is real




<assign> Grenerate error message. }

expected
type = < N actual
v | int <expr> type=
. real
A
actual type = int
., <var> <var>{2] | <var>[3]
actual actual
. type = type =
actual type = int int real SUppOSG:
A = A + B Ais int
B is real




539\@1)«*%\*@.{:&@.&
Definitions

"A syntax-directed definition (SDD) is
a context-free gqrammar together with
abtributes and rules. Abbributes are
associated with grammar svmbots and
rules are associated with produc&ov\s"

[p. 304 ]



Evaluakion Orders
for SDD's

"The dependency graph characterizes
the Fmssibi.@. orders tn which we can
evaluate the attributes ot the various
nodes of the parse tree. If the
dependency graph has an edge from
node M to node N, then the attribute
corresponding to M must be evaluated
before the abtribute of N." Lp. 312]




Exampte:

declaration grammar
(Figure 6.%)

PRODUCTION SEMANTIC RULES
1 D->TL L.inh = T.bype
2 1E o) T.type = nteger
3 T -> floak T.kype = floak
£y Liinh = L.k
i Al addTypelid.entry, L.inh)
5 L-id | addTypelidentry, Linh)




E:xampte:
depemdemcv grapk

(Fiqure 59, edited 'real’ => floal")

T 4 type ¢

ﬂda ¢ id; 3 entry

inh 7 L. 8 enity
: idy 2 entry
inh 9 L 10 entry

id; 1 “eftas

. Dependency graph for a declaration float id; , id2 ids



Synthesized and

Inherited abbribubes

"A synthesized attribute at node N is defined only in terms
of atbribute values ot the children of N and ak N itself.” [p.
304 ]

"An inherited attribute ot node N is defined only in terms
of attribute values at N's parents, N itself, and N's
siblings.” [p. 304 ]




S—-Atbribubted
Definitions

"The first class [of SDD's that do not
permit dependency graphs with ccvd@.s]
s defined as follows:

o An SDD is S—attributed if every
abbtribute is sjmﬁkesiz.ed«“ [p. 313]



L-Abbributed
Definitions

"The second class of SDD's [that do not
permit dependency graphs with cycles] is
called L-attributed definitions. The idea
behind this class is that, between the
attributes associated with a production
boci:j, degémd@.mavmgraph edqges can qo
from Lleft to right, but not from right to
left (hence 'L-abtributed').” [F:u 313]



Semantic rules/functions

* We can associate with each rule R of the grammar a set
of semantic functions.

e Forrule X0 - X1 X2 .. Xn

— synthesized attribute of LHS:
S(X0) = £(A(X1), A(X2), .., A(Xn))

— 1nherited attribute of RHS member:
for 1<=j<=n, I(X]j) = £(A(X0),..,A(X3J-1))
(note that dependence 1s on siblings to left only)



L-Atbributed Definibions

"Each abbribute must be eibher:

1. Svm&kesiz.ed, or

2. Inherited, but with the rules Limited as follows. Suppose that
there is a Frodue&iom A =>» X1 X2 ... Xin and Ethat there is an
inherited atbribute Xi.a computed bj a rule associated with
Ehis Frodu&wh. Then the rule may use m\iv:

(a) Inherited abtributes associakted with the head A.

(b) Eikher nherited or sfjh«&kesiz.ed akbributes associaked

with the occurrences of symbols X1, X2, ... Xi-1 located
to the left of Xi.

(¢) Inherited or svakesLaed abbributes associated with this
occurrence of Xi itself, but only in such a way that
there are no cycles in a dependency graph formed by
the attributes of this Xi. " [p. 313-4]



Sjv\hxw‘lﬁir@.ﬂ%ed
Translabtion Schemes

"Svm&ax~d£re¢&ed Eranslation schemes
are a aemptemas«%arv notabtion to
syntax-directed definitions, [...] A
sw«%ax--dﬁma&d translation scheme
(SDT) is a context-free grammar with
program fragments embedded within
pradm&%mm bodies.” fp 324 ]



Sjmﬁaxwﬁireﬂﬁed
Translabtion Schemes

"Any SDT cain be Lm[ptémev\%ecl. bj first
building a parse tree and then
performing the actions n a [...] pre-
order traversal.” [p. 324

"iji;«catbj, SDT's are ngi.@.mem&aci
during parsing, without building a
parse kree." [p. 324 ]



Sjv\hxwﬁir@:%ed
Translabtion Schemes

"...the si;mpt@.s% SDD imgtemem&a&iom
occurs when we can parse the grammar
ba&%c)m“up and the SDD is S—abttributed.
In that case, we can conskruct an SDT
th which each action is ptaced ab the
end of the production and is executed
along with the reduction of the body to
the head of that pradu&&om" {[m 324



Sjv\hxwﬁir@:%ed
Translabtion Schemes

"If the attributes are all synthesized,
and the actions occur ot the ends of
the Frao’tw&%mms, then we can compute
the attributes for the head when we
reduce the bc’d‘ﬁ to the head.” {F‘ 3285 ]



Svm&ax~b£re¢i&ed Translakion Schemes

"We consider [how] the more qgeneral case of an L-attributed SDD." Lp. 331

"The rules for turiing an L-attributed SDD into an SDT are as follows:

1. Embed the action that computes the inherited
attributes for a nonterminal A immediately before
the occurrence of A in the bodj of the prodm&&&ow

2. Place the actions that compute a synthesized
attribute for the head of a production at the end
of the body of that production.” [p. 331]



S»jh&&)«*‘lﬁ&reaﬁed Translakion Schemes

"We consider [how] the more qgeneral case of an L-attributed SDD." Lp. 331]

"The rules for turiing an L-attributed SDD into an SDT are as follows:

1. Embed the action that computes the inherited
attributes for a nonterminal A immediately before
the occurrence of A in the bodj of the production.

X => a { inherited attributes of A t A f

2. Place the actions that compute a synthesized
attribute for the head of a production ot the end
of the bc;mciv of thak production.” [p. 331]

A->yi synthesized atbributes of A §



lmptemev\&ug L-Attributed SDD's

"..we discuss the following methods for translating
during parsing:

6. Im!ﬂemam& an SDT i conjunction an LR parser.

... the SDT for an L-attributed SDD typically has
actions in the middle of productions, and we cannot
be sure during an LR parse that we are even i thak
production until its entire body has been
consbructed

... [however] if the underlying grammar is LL, we can
always handle both khe parsing and Eranslabtion
bO&OM“%P." Dﬁ 33% ]



Bottom-up parsing of L-Attributed SDD's

"...glven an L-attributed SDD on an LL grammar, we can adapt the
gramwmar to compute the same SDD on the hew grammar during an LR
parse” [p. 34%]

1. "Start with the SDT [...] which places embedded actions before each
nonterminal to compute its inherited attributes and an action at
the end of the production to compute synthesized attributes.

2. Introduce into the grammar a marker nonterminal in place of
each embedded action. Each such place gets a distinct marker,
and there is one production for any marker M, M —> .

3. Modify the action a i marker nonterminal M replaces it in some
production A -> «a {al B, and associate with M -> ¢ an action o that

(a) Copies, as inherited attributes of M, any attributes of A or
sjmbots of a that action a needs,

(b) Computes the attributes in the same way as a, but makes
those abtributes be svn&he_siz.ed attributes of m" fp. 349]



Bottom-up parsing of L-Attributed SDD's

"...we shall E;mpiemenﬁ the actions on
the LR parsing stack, so the necessary
abbribubes will atwajs be available a
lknown number of positions down the
stack." [p. 349]



| XO\MPL@ 5a2$ {P* 349]

A->{Bi=fAi)lIBC
becomes
A=->MBRB C

M= fMi = Ay Ms = (M), ]






