
CSE443
Compilers
Dr. Carl Alphonce

alphonce@buffalo.edu
343 Davis Hall

Example
<assign>  <var> = <expr>
<expr>.expType  <var>.actType

<expr>  <var>[2] + <var>[3]
<expr>.actType  if (var[2].actType = int) and
	 	 	 (var[3].actType = int)
	 	 	 then int
	 	 	 else real
<expr>.actType == <expr>.expType

<expr>  <var>
<expr>.actType  <var>.actType
<expr>.actType == <expr>.expType

<var>  A | B | C
<var>.actType  lookUp(<var>.string)

Syntactic rule
Semantic rule/function
Semantic predicate

Start with a production of the grammar

Example
<assign>  <var> = <expr>
<expr>.expType  <var>.actType

<expr>  <var>[2] + <var>[3]
<expr>.actType  if (var[2].actType = int) and
	 	 	 (var[3].actType = int)
	 	 	 then int
	 	 	 else real
<expr>.actType == <expr>.expType

<expr>  <var>
<expr>.actType  <var>.actType
<expr>.actType == <expr>.expType

<var>  A | B | C
<var>.actType  lookUp(<var>.string)

Syntactic rule
Semantic rule/function
Semantic predicate

Associate an attribute with a non-
terminal, <expr>, on the right of the

production: expType (the expected type
of the expression)

Example
<assign>  <var> = <expr>
<expr>.expType  <var>.actType

<expr>  <var>[2] + <var>[3]
<expr>.actType  if (var[2].actType = int) and
	 	 	 (var[3].actType = int)
	 	 	 then int
	 	 	 else real
<expr>.actType == <expr>.expType

<expr>  <var>
<expr>.actType  <var>.actType
<expr>.actType == <expr>.expType

<var>  A | B | C
<var>.actType  lookUp(<var>.string)

Syntactic rule
Semantic rule/function
Semantic predicate

Assign to <expr>.expType the value of
<var>.actType, the actual type of the
variable (the type the variable was

declared as).

Example
<assign>  <var> = <expr>
<expr>.expType  <var>.actType

<expr>  <var>[2] + <var>[3]
<expr>.actType  if (var[2].actType = int) and
	 	 	 (var[3].actType = int)
	 	 	 then int
	 	 	 else real
<expr>.actType == <expr>.expType

<expr>  <var>
<expr>.actType  <var>.actType
<expr>.actType == <expr>.expType

<var>  A | B | C
<var>.actType  lookUp(<var>.string)

Syntactic rule
Semantic rule/function
Semantic predicate

In other words, we expect the expression
whose value is being assigned to a

variable to have the same type as the
variable.

Example
<assign>  <var> = <expr>
<expr>.expType  <var>.actType

<expr>  <var>[2] + <var>[3]
<expr>.actType  if (var[2].actType = int) and
	 	 	 (var[3].actType = int)
	 	 	 then int
	 	 	 else real
<expr>.actType == <expr>.expType

<expr>  <var>
<expr>.actType  <var>.actType
<expr>.actType == <expr>.expType

<var>  A | B | C
<var>.actType  lookUp(<var>.string)

Syntactic rule
Semantic rule/function
Semantic predicate

Another grammar production

Example
<assign>  <var> = <expr>
<expr>.expType  <var>.actType

<expr>  <var>[2] + <var>[3]
<expr>.actType  if (var[2].actType = int) and
	 	 	 (var[3].actType = int)
	 	 	 then int
	 	 	 else real
<expr>.actType == <expr>.expType

<expr>  <var>
<expr>.actType  <var>.actType
<expr>.actType == <expr>.expType

<var>  A | B | C
<var>.actType  lookUp(<var>.string)

This production has a more involved
semantic rule: it handles type coercion.
This rule assumes that there are only two
numeric types (int and real) and that int

can be coerced to real.

Syntactic rule
Semantic rule/function
Semantic predicate

Example
<assign>  <var> = <expr>
<expr>.expType  <var>.actType

<expr>  <var>[2] + <var>[3]
<expr>.actType  if (var[2].actType = int) and
	 	 	 (var[3].actType = int)
	 	 	 then int
	 	 	 else real
<expr>.actType == <expr>.expType

<expr>  <var>
<expr>.actType  <var>.actType
<expr>.actType == <expr>.expType

<var>  A | B | C
<var>.actType  lookUp(<var>.string)

Here is our first semantic predicate,
which enforces a type-checking

constraint: the actual type of <expr> must
match the expected type (from elsewhere

in the tree)

Syntactic rule
Semantic rule/function
Semantic predicate

Example
<assign>  <var> = <expr>
<expr>.expType  <var>.actType

<expr>  <var>[2] + <var>[3]
<expr>.actType  if (var[2].actType = int) and
	 	 	 (var[3].actType = int)
	 	 	 then int
	 	 	 else real
<expr>.actType == <expr>.expType

<expr>  <var>
<expr>.actType  <var>.actType
<expr>.actType == <expr>.expType

<var>  A | B | C
<var>.actType  lookUp(<var>.string)

Another
production, with
a semantic rule
and a semantic

predicate.

Syntactic rule
Semantic rule/function
Semantic predicate

Example
<assign>  <var> = <expr>
<expr>.expType  <var>.actType

<expr>  <var>[2] + <var>[3]
<expr>.actType  if (var[2].actType = int) and
	 	 	 (var[3].actType = int)
	 	 	 then int
	 	 	 else real
<expr>.actType == <expr>.expType

<expr>  <var>
<expr>.actType  <var>.actType
<expr>.actType == <expr>.expType

<var>  A | B | C
<var>.actType  lookUp(<var>.string)

This semantic rule
says that the type
of an identifier is

determined by
looking up its

type in the symbol
table.

Syntactic rule
Semantic rule/function
Semantic predicate

All the productions, rules and predicates
<assign>  <var> = <expr>
<expr>.expType  <var>.actType

<expr>  <var>[2] + <var>[3]
<expr>.actType  if (var[2].actType = int) and
	 	 	 (var[3].actType = int)
	 	 	 then int
	 	 	 else real
<expr>.actType == <expr>.expType

<expr>  <var>
<expr>.actType  <var>.actType
<expr>.actType == <expr>.expType

<var>  A | B | C
<var>.actType  lookUp(<var>.string)

Syntactic rule
Semantic rule/function
Semantic predicate

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

Suppose:
A is int
B is int

Let's see how these rules
work in practice!

In this example A and B are
both of type int.

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

Suppose:
A is int
B is int

actual type = int

actual type = int

expected
type =
int

actual
type =
int

actual
type =
int

actual
type =
int

Effects of the semantic
rules is shown in red.

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

Suppose:
A is real
B is int

This is the same example
structure, but now assume A
is of type real and B is of

type int.

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = real

actual type = real

expected
type =
real

actual
type =
real

actual
type =
int

actual
type =
real

This is the same example
structure, but now assume A
is of type real and B is of

type int.

Suppose:
A is real
B is int

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = real

actual type = real

expected
type =
real

actual
type =
real

actual
type =
int

actual
type =
real

type coercion during ‘+’:
int  real

This is the same example
structure, but now assume A
is of type real and B is of

type int.

Suppose:
A is real
B is int

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = real

actual type = real

expected
type =
real

actual
type =
real

actual
type =
int

actual
type =
real

This is the same example
structure, but now assume A
is of type real and B is of

type int.

Generate code to do
conversion.

Suppose:
A is real
B is int

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

Suppose:
A is int

B is real

This is the same example
structure, but now assume A
is of type int and B is of

type real.

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = int

actual type = int

expected
type =
int

actual
type =
int

actual
type =
real

actual
type =
real

This is the same example
structure, but now assume A
is of type int and B is of

type real.

Suppose:
A is int

B is real

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = int

actual type = int

expected
type =
int

actual
type =
int

actual
type =
real

actual
type =
real

Houston, we have a problem!
Semantic predicate is false.

Suppose:
A is int

B is real

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = int

actual type = int

expected
type =
int

actual
type =
int

actual
type =
real

actual
type =
real

Generate error message.

Suppose:
A is int

B is real

Syntax-Directed
Definitions

"A syntax-directed definition (SDD) is
a context-free grammar together with
attributes and rules. Attributes are
associated with grammar symbols and
rules are associated with productions"
[p. 304]

Evaluation Orders
for SDD's

"The dependency graph characterizes
the possible orders in which we can
evaluate the attributes at the various
nodes of the parse tree. If the
dependency graph has an edge from
node M to node N, then the attribute
corresponding to M must be evaluated
before the attribute of N." [p. 312]

PRODUCTION SEMANTIC RULES

1 D -> T L L.inh = T.type

2 T -> int T.type = integer

3 T -> float T.type = float

4 L -> L1 , id
L1.inh = L.inh

addType(id.entry, L.inh)

5 L -> id addType(id.entry, L.inh)

Example:
declaration grammar

(Figure 5.8)

Example:
dependency graph

(Figure 5.9, edited 'real' -> 'float')

float

Synthesized and
Inherited attributes

"A synthesized attribute at node N is defined only in terms
of attribute values at the children of N and at N itself." [p.
304]

"An inherited attribute at node N is defined only in terms
of attribute values at N's parents, N itself, and N's
siblings." [p. 304]

S-Attributed
Definitions

"The first class [of SDD's that do not
permit dependency graphs with cycles]
is defined as follows:

An SDD is S-attributed if every
attribute is synthesized." [p. 313]

L-Attributed
Definitions

"The second class of SDD's [that do not
permit dependency graphs with cycles] is
called L-attributed definitions. The idea
behind this class is that, between the
attributes associated with a production
body, dependency-graph edges can go
from left to right, but not from right to
left (hence 'L-attributed')." [p. 313]

Semantic rules/functions
• We can associate with each rule R of the grammar a set

of semantic functions.

• For rule X0  X1 X2 … Xn
– synthesized attribute of LHS:

S(X0) = f(A(X1), A(X2), …, A(Xn))

– inherited attribute of RHS member:
for 1<=j<=n, I(Xj) = f(A(X0),…,A(Xj-1))
(note that dependence is on siblings to left only)

L-Attributed Definitions
"Each attribute must be either:

1. Synthesized, or

2. Inherited, but with the rules limited as follows. Suppose that
there is a production A -> X1 X2 … Xn and that there is an
inherited attribute Xi.a computed by a rule associated with
this production. Then the rule may use only:

(a) Inherited attributes associated with the head A.

(b) Either inherited or synthesized attributes associated
with the occurrences of symbols X1, X2, … Xi-1 located
to the left of Xi.

(c) Inherited or synthesized attributes associated with this
occurrence of Xi itself, but only in such a way that
there are no cycles in a dependency graph formed by
the attributes of this Xi. " [p. 313-4]

Syntax-Directed
Translation Schemes
"Syntax-directed translation schemes
are a complementary notation to
syntax-directed definitions. […] A
syntax-directed translation scheme
(SDT) is a context-free grammar with
program fragments embedded within
production bodies." [p. 324]

Syntax-Directed
Translation Schemes
"Any SDT can be implemented by first
building a parse tree and then
performing the actions in a […] pre-
order traversal." [p. 324]

"Typically, SDT's are implemented
during parsing, without building a
parse tree." [p. 324]

Syntax-Directed
Translation Schemes
"…the simplest SDD implementation
occurs when we can parse the grammar
bottom-up and the SDD is S-attributed.
In that case, we can construct an SDT
in which each action is placed at the
end of the production and is executed
along with the reduction of the body to
the head of that production." [p. 324]

Syntax-Directed
Translation Schemes

"If the attributes are all synthesized,
and the actions occur at the ends of
the productions, then we can compute
the attributes for the head when we
reduce the body to the head." [p. 325]

Syntax-Directed Translation Schemes

1. Embed the action that computes the inherited
attributes for a nonterminal A immediately before
the occurrence of A in the body of the production.

2. Place the actions that compute a synthesized
attribute for the head of a production at the end
of the body of that production." [p. 331]

"We consider [now] the more general case of an L-attributed SDD." [p. 331]

"The rules for turning an L-attributed SDD into an SDT are as follows:

Syntax-Directed Translation Schemes

1. Embed the action that computes the inherited
attributes for a nonterminal A immediately before
the occurrence of A in the body of the production.

X -> { inherited attributes of A } A

2. Place the actions that compute a synthesized
attribute for the head of a production at the end
of the body of that production." [p. 331]

A -> { synthesized attributes of A }

α β

γ

"We consider [now] the more general case of an L-attributed SDD." [p. 331]

"The rules for turning an L-attributed SDD into an SDT are as follows:

Implementing L-Attributed SDD's

"…we discuss the following methods for translating
during parsing:

6. Implement an SDT in conjunction an LR parser.

… the SDT for an L-attributed SDD typically has
actions in the middle of productions, and we cannot
be sure during an LR parse that we are even in that
production until its entire body has been
constructed

… [however] if the underlying grammar is LL, we can
always handle both the parsing and translation
bottom-up." [p. 338]

Bottom-up parsing of L-Attributed SDD's

"…given an L-attributed SDD on an LL grammar, we can adapt the
grammar to compute the same SDD on the new grammar during an LR
parse" [p. 348]

1. "Start with the SDT […] which places embedded actions before each
nonterminal to compute its inherited attributes and an action at
the end of the production to compute synthesized attributes.

2. Introduce into the grammar a marker nonterminal in place of
each embedded action. Each such place gets a distinct marker,
and there is one production for any marker M, M -> 𝜀.

3. Modify the action a if marker nonterminal M replaces it in some
production A -> 𝛼 {a} 𝛽, and associate with M -> 𝜀 an action a' that

(a) Copies, as inherited attributes of M, any attributes of A or
symbols of 𝛼 that action a needs.

(b) Computes the attributes in the same way as a, but makes
those attributes be synthesized attributes of M" [p. 349]

Bottom-up parsing of L-Attributed SDD's

"…we shall implement the actions on
the LR parsing stack, so the necessary
attributes will always be available a
known number of positions down the
stack." [p. 349]

Example 5.25 [p. 349]

A -> { B.i = f(A.i); } B C

becomes

A -> M B C

M -> {M.i = A.i; M.s = f(M.i); }

