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Example
<assign>  <var> = <expr> 
<expr>.expType  <var>.actType 

<expr>  <var>[2] + <var>[3] 
<expr>.actType  if (var[2].actType = int) and 
	 	 	    (var[3].actType = int) 
	 	 	 then int 
	 	 	 else real 
<expr>.actType == <expr>.expType 

<expr>  <var> 
<expr>.actType  <var>.actType 
<expr>.actType == <expr>.expType 

<var>  A | B | C 
<var>.actType  lookUp(<var>.string)

Syntactic rule 
Semantic rule/function 
Semantic predicate

Start with a production of the grammar



Example
<assign>  <var> = <expr> 
<expr>.expType  <var>.actType 

<expr>  <var>[2] + <var>[3] 
<expr>.actType  if (var[2].actType = int) and 
	 	 	    (var[3].actType = int) 
	 	 	 then int 
	 	 	 else real 
<expr>.actType == <expr>.expType 

<expr>  <var> 
<expr>.actType  <var>.actType 
<expr>.actType == <expr>.expType 

<var>  A | B | C 
<var>.actType  lookUp(<var>.string)

Syntactic rule 
Semantic rule/function 
Semantic predicate

Associate an attribute with a non-
terminal, <expr>, on the right of the 

production: expType (the expected type 
of the expression)



Example
<assign>  <var> = <expr> 
<expr>.expType  <var>.actType 

<expr>  <var>[2] + <var>[3] 
<expr>.actType  if (var[2].actType = int) and 
	 	 	    (var[3].actType = int) 
	 	 	 then int 
	 	 	 else real 
<expr>.actType == <expr>.expType 

<expr>  <var> 
<expr>.actType  <var>.actType 
<expr>.actType == <expr>.expType 

<var>  A | B | C 
<var>.actType  lookUp(<var>.string)

Syntactic rule 
Semantic rule/function 
Semantic predicate

Assign to <expr>.expType the value of 
<var>.actType, the actual type of the 
variable (the type the variable was 

declared as).



Example
<assign>  <var> = <expr> 
<expr>.expType  <var>.actType 

<expr>  <var>[2] + <var>[3] 
<expr>.actType  if (var[2].actType = int) and 
	 	 	    (var[3].actType = int) 
	 	 	 then int 
	 	 	 else real 
<expr>.actType == <expr>.expType 

<expr>  <var> 
<expr>.actType  <var>.actType 
<expr>.actType == <expr>.expType 

<var>  A | B | C 
<var>.actType  lookUp(<var>.string)

Syntactic rule 
Semantic rule/function 
Semantic predicate

In other words, we expect the expression 
whose value is being assigned to a 

variable to have the same type as the 
variable.



Example
<assign>  <var> = <expr> 
<expr>.expType  <var>.actType 

<expr>  <var>[2] + <var>[3] 
<expr>.actType  if (var[2].actType = int) and 
	 	 	    (var[3].actType = int) 
	 	 	 then int 
	 	 	 else real 
<expr>.actType == <expr>.expType 

<expr>  <var> 
<expr>.actType  <var>.actType 
<expr>.actType == <expr>.expType 

<var>  A | B | C 
<var>.actType  lookUp(<var>.string)

Syntactic rule 
Semantic rule/function 
Semantic predicate

Another grammar production



Example
<assign>  <var> = <expr> 
<expr>.expType  <var>.actType 

<expr>  <var>[2] + <var>[3] 
<expr>.actType  if (var[2].actType = int) and 
	 	 	    (var[3].actType = int) 
	 	 	 then int 
	 	 	 else real 
<expr>.actType == <expr>.expType 

<expr>  <var> 
<expr>.actType  <var>.actType 
<expr>.actType == <expr>.expType 

<var>  A | B | C 
<var>.actType  lookUp(<var>.string)

This production has a more involved 
semantic rule: it handles type coercion. 
This rule assumes that there are only two 
numeric types (int and real) and that int 

can be coerced to real. 

Syntactic rule 
Semantic rule/function 
Semantic predicate



Example
<assign>  <var> = <expr> 
<expr>.expType  <var>.actType 

<expr>  <var>[2] + <var>[3] 
<expr>.actType  if (var[2].actType = int) and 
	 	 	    (var[3].actType = int) 
	 	 	 then int 
	 	 	 else real 
<expr>.actType == <expr>.expType 

<expr>  <var> 
<expr>.actType  <var>.actType 
<expr>.actType == <expr>.expType 

<var>  A | B | C 
<var>.actType  lookUp(<var>.string)

Here is our first semantic predicate, 
which enforces a type-checking 

constraint: the actual type of <expr> must 
match the expected type (from elsewhere 

in the tree)

Syntactic rule 
Semantic rule/function 
Semantic predicate



Example
<assign>  <var> = <expr> 
<expr>.expType  <var>.actType 

<expr>  <var>[2] + <var>[3] 
<expr>.actType  if (var[2].actType = int) and 
	 	 	    (var[3].actType = int) 
	 	 	 then int 
	 	 	 else real 
<expr>.actType == <expr>.expType 

<expr>  <var> 
<expr>.actType  <var>.actType 
<expr>.actType == <expr>.expType 

<var>  A | B | C 
<var>.actType  lookUp(<var>.string)

Another 
production, with 
a semantic rule 
and a semantic 

predicate.

Syntactic rule 
Semantic rule/function 
Semantic predicate



Example
<assign>  <var> = <expr> 
<expr>.expType  <var>.actType 

<expr>  <var>[2] + <var>[3] 
<expr>.actType  if (var[2].actType = int) and 
	 	 	    (var[3].actType = int) 
	 	 	 then int 
	 	 	 else real 
<expr>.actType == <expr>.expType 

<expr>  <var> 
<expr>.actType  <var>.actType 
<expr>.actType == <expr>.expType 

<var>  A | B | C 
<var>.actType  lookUp(<var>.string)

This semantic rule 
says that the type 
of an identifier is 

determined by 
looking up its 

type in the symbol 
table.

Syntactic rule 
Semantic rule/function 
Semantic predicate



All the productions, rules and predicates
<assign>  <var> = <expr> 
<expr>.expType  <var>.actType 

<expr>  <var>[2] + <var>[3] 
<expr>.actType  if (var[2].actType = int) and 
	 	 	    (var[3].actType = int) 
	 	 	 then int 
	 	 	 else real 
<expr>.actType == <expr>.expType 

<expr>  <var> 
<expr>.actType  <var>.actType 
<expr>.actType == <expr>.expType 

<var>  A | B | C 
<var>.actType  lookUp(<var>.string)

Syntactic rule 
Semantic rule/function 
Semantic predicate



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

Suppose: 
A is int 
B is int

Let's see how these rules 
work in practice! 

In this example A and B are 
both of type int.



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

Suppose: 
A is int 
B is int

actual type = int

actual type = int

expected 
type = 
int

actual 
type =  
int

actual 
type =  
int

actual 
type =  
int

Effects of the semantic 
rules is shown in red.



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

Suppose: 
A is real 
B is int

This is the same example 
structure, but now assume A 
is of type real and B is of 

type int.



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = real

actual type = real

expected 
type = 
real

actual 
type =  
real

actual 
type =  
int

actual 
type =  
real

This is the same example 
structure, but now assume A 
is of type real and B is of 

type int.

Suppose: 
A is real 
B is int



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = real

actual type = real

expected 
type = 
real

actual 
type =  
real

actual 
type =  
int

actual 
type =  
real

type coercion during ‘+’: 
int  real

This is the same example 
structure, but now assume A 
is of type real and B is of 

type int.

Suppose: 
A is real 
B is int



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = real

actual type = real

expected 
type = 
real

actual 
type =  
real

actual 
type =  
int

actual 
type =  
real

This is the same example 
structure, but now assume A 
is of type real and B is of 

type int.

Generate code to do 
conversion.

Suppose: 
A is real 
B is int



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

Suppose: 
A is int 

B is real

This is the same example 
structure, but now assume A 
is of type int and B is of 

type real.



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = int

actual type = int

expected 
type = 
int

actual 
type =  
int

actual 
type =  
real

actual 
type =  
real

This is the same example 
structure, but now assume A 
is of type int and B is of 

type real.

Suppose: 
A is int 

B is real



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = int

actual type = int

expected 
type = 
int

actual 
type =  
int

actual 
type =  
real

actual 
type =  
real

Houston, we have a problem! 
Semantic predicate is false.

Suppose: 
A is int 

B is real



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = int

actual type = int

expected 
type = 
int

actual 
type =  
int

actual 
type =  
real

actual 
type =  
real

Generate error message.

Suppose: 
A is int 

B is real



Syntax-Directed 
Definitions

"A syntax-directed definition (SDD) is 
a context-free grammar together with 
attributes and rules.  Attributes are 
associated with grammar symbols and 
rules are associated with productions" 
[p. 304]



Evaluation Orders 
for SDD's

"The dependency graph characterizes 
the possible orders in which we can 
evaluate the attributes at the various 
nodes of the parse tree. If the 
dependency graph has an edge from 
node M to node N, then the attribute 
corresponding to M must be evaluated 
before the attribute of N." [p. 312]



PRODUCTION SEMANTIC RULES

1 D -> T L L.inh = T.type

2 T -> int T.type = integer

3 T -> float T.type = float

4 L -> L1 , id
L1.inh = L.inh 

addType(id.entry, L.inh)

5 L -> id addType(id.entry, L.inh)

Example: 
declaration grammar 

(Figure 5.8)



Example: 
dependency graph 

(Figure 5.9, edited 'real' -> 'float')

float



Synthesized and 
Inherited attributes

"A synthesized attribute at node N is defined only in terms 
of attribute values at the children of N and at N itself." [p. 
304] 

"An inherited attribute at node N is defined only  in terms 
of attribute values at N's parents, N itself, and N's 
siblings." [p. 304] 



S-Attributed 
Definitions

"The first class [of SDD's that do not 
permit dependency graphs with cycles] 
is defined as follows: 

An SDD is S-attributed if every 
attribute is synthesized." [p. 313]



L-Attributed 
Definitions

"The second class of SDD's [that do not 
permit dependency graphs with cycles] is 
called L-attributed definitions.  The idea 
behind this class is that, between the 
attributes associated with a production 
body, dependency-graph edges can go 
from left to right, but not from right to 
left (hence 'L-attributed')." [p. 313]



Semantic rules/functions
• We can associate with each rule R of the grammar a set 

of semantic functions. 

• For rule   X0  X1 X2 … Xn 
– synthesized attribute of LHS: 

S(X0) = f(A(X1), A(X2), …, A(Xn)) 

– inherited attribute of RHS member: 
for 1<=j<=n, I(Xj) = f(A(X0),…,A(Xj-1)) 
(note that dependence is on siblings to left only)



L-Attributed Definitions
"Each attribute must be either: 

1. Synthesized, or  

2. Inherited, but with the rules limited as follows.  Suppose that 
there is a production A -> X1 X2 … Xn and that there is an 
inherited attribute Xi.a computed by a rule associated with 
this production.  Then the rule may use only: 

(a) Inherited attributes associated with the head A. 

(b) Either inherited or synthesized attributes associated 
with the occurrences of symbols X1, X2, … Xi-1 located 
to the left of Xi. 

(c) Inherited or synthesized attributes associated with this 
occurrence of Xi itself, but only in such a way that 
there are no cycles in a dependency graph formed by 
the attributes of this Xi. " [p. 313-4]



Syntax-Directed 
Translation Schemes
"Syntax-directed translation schemes 
are a complementary notation to 
syntax-directed definitions. […] A 
syntax-directed translation scheme 
(SDT) is a context-free grammar with 
program fragments embedded within 
production bodies." [p. 324]



Syntax-Directed 
Translation Schemes
"Any SDT can be implemented by first 
building a parse tree and then 
performing the actions in a […] pre-
order traversal." [p. 324] 

"Typically, SDT's are implemented 
during parsing, without building a 
parse tree." [p. 324]



Syntax-Directed 
Translation Schemes
"…the simplest SDD implementation 
occurs when we can parse the grammar 
bottom-up and the SDD is S-attributed.  
In that case, we can construct an SDT 
in which each action is placed at the 
end of the production and is executed 
along with the reduction of the body to 
the head of that production." [p. 324]



Syntax-Directed 
Translation Schemes

"If the attributes are all synthesized, 
and the actions occur at the ends of 
the productions, then we can compute 
the attributes for the head when we 
reduce the body to the head." [p. 325]



Syntax-Directed Translation Schemes

1. Embed the action that computes the inherited 
attributes for a nonterminal A immediately before 
the occurrence of A in the body of the production. 

2. Place the actions that compute a synthesized 
attribute for the head of a production at the end 
of the body of that production." [p. 331] 

 

"We consider [now] the more general case of an L-attributed SDD." [p. 331] 

"The rules for turning an L-attributed SDD into an SDT are as follows:



Syntax-Directed Translation Schemes

1. Embed the action that computes the inherited 
attributes for a nonterminal A immediately before 
the occurrence of A in the body of the production. 

X ->  { inherited attributes of A } A  

2. Place the actions that compute a synthesized 
attribute for the head of a production at the end 
of the body of that production." [p. 331] 

A ->  { synthesized attributes of A }

α β

γ

"We consider [now] the more general case of an L-attributed SDD." [p. 331] 

"The rules for turning an L-attributed SDD into an SDT are as follows:



Implementing L-Attributed SDD's

"…we discuss the following methods for translating 
during parsing: 

6. Implement an SDT in conjunction an LR parser.   

… the SDT for an L-attributed SDD typically has 
actions in the middle of productions, and we cannot 
be sure during an LR parse that we are even in that 
production until its entire body has been 
constructed 

… [however] if the underlying grammar is LL, we can 
always handle both the parsing and translation 
bottom-up." [p. 338]



Bottom-up parsing of L-Attributed SDD's

"…given an L-attributed SDD on an LL grammar, we can adapt the 
grammar to compute the same SDD on the new grammar during an LR 
parse" [p. 348] 

1. "Start with the SDT […] which places embedded actions before each 
nonterminal to compute its inherited attributes and an action at 
the end of the production to compute synthesized attributes. 

2. Introduce into the grammar a marker nonterminal in place of 
each embedded action.  Each such place gets a distinct marker, 
and there is one production for any marker M, M -> 𝜀. 

3. Modify the action a if marker nonterminal M replaces it in some 
production A -> 𝛼 {a} 𝛽, and associate with M -> 𝜀 an action a' that 

(a) Copies, as inherited attributes of M, any attributes of A or 
symbols of 𝛼 that action a needs. 

(b) Computes the attributes in the same way as a, but makes 
those attributes be synthesized attributes of M" [p. 349]



Bottom-up parsing of L-Attributed SDD's

"…we shall implement the actions on 
the LR parsing stack, so the necessary 
attributes will always be available a 
known number of positions down the 
stack." [p. 349]



Example 5.25 [p. 349]

A -> { B.i = f(A.i); } B C 

becomes 

A -> M B C 

M -> {M.i = A.i; M.s = f(M.i); }




