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Attribute grammars

• Attribute grammars provide a neater way of 
encoding such information. 

• Each syntactic rule of the grammar can be 
decorated with: 
– a set of semantic rules/functions 
– a set of semantic predicates

Review



Attributes
• We can associate with each symbol X of the 

grammar a set of attributes A(X).  Attributes are 
partitioned into: 

synthesized attributes S(X) – pass info up parse tree 

inherited attributes I(X) – pass info down parse tree

Review



Example
<assign>  <var> = <expr> 
<expr>.expType  <var>.actType 

<expr>  <var>[2] + <var>[3] 
<expr>.actType  if (var[2].actType = int) and 
	 	 	    (var[3].actType = int) 
	 	 	 then int 
	 	 	 else real 
<expr>.actType == <expr>.expType 

<expr>  <var> 
<expr>.actType  <var>.actType 
<expr>.actType == <expr>.expType 

<var>  A | B | C 
<var>.actType  lookUp(<var>.string)

Syntactic rule 
Semantic rule/function 
Semantic predicate

Review



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

Suppose: 
A is int 
B is int

actual type = int

actual type = int

expected 
type = 
int

actual 
type =  
int

actual 
type =  
int

actual 
type =  
int

Effects of the semantic 
rules is shown in red.

Review



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = real

actual type = real

expected 
type = 
real

actual 
type =  
real

actual 
type =  
int

actual 
type =  
real

This is the same example 
structure, but now assume A 
is of type real and B is of 

type int.

Generate code to do 
conversion.

Suppose: 
A is real 
B is int

Review



A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = int

actual type = int

expected 
type = 
int

actual 
type =  
int

actual 
type =  
real

actual 
type =  
real

Generate error message.

Suppose: 
A is int 

B is real

Review



Syntax-Directed 
Definitions

"A syntax-directed definition (SDD) is 
a context-free grammar together with 
attributes and rules.  Attributes are 
associated with grammar symbols and 
rules are associated with productions" 
[p. 304]



Syntax-Directed 
Translation Schemes
"Syntax-directed translation schemes 
are a complementary notation to 
syntax-directed definitions. […] A 
syntax-directed translation scheme 
(SDT) is a context-free grammar with 
program fragments embedded within 
production bodies." [p. 324]



Syntax-Directed 
Translation Schemes
"Any SDT can be implemented by first 
building a parse tree and then 
performing the actions in a […] pre-
order traversal." [p. 324] 

"Typically, SDT's are implemented 
during parsing, without building a 
parse tree." [p. 324]



Syntax-Directed 
Translation Schemes
"…the simplest SDD implementation 
occurs when we can parse the grammar 
bottom-up and the SDD is S-attributed.  
In that case, we can construct an SDT 
in which each action is placed at the 
end of the production and is executed 
along with the reduction of the body to 
the head of that production." [p. 324]



Syntax-Directed 
Translation Schemes

"If the attributes are all synthesized, 
and the actions occur at the ends of 
the productions, then we can compute 
the attributes for the head when we 
reduce the body to the head." [p. 325]



Syntax-Directed Translation Schemes

1. Embed the action that computes the inherited 
attributes for a nonterminal A immediately before 
the occurrence of A in the body of the production. 

2. Place the actions that compute a synthesized 
attribute for the head of a production at the end 
of the body of that production." [p. 331] 

 

"We consider [now] the more general case of an L-attributed SDD." [p. 331] 

"The rules for turning an L-attributed SDD into an SDT are as follows:



Syntax-Directed Translation Schemes

1. Embed the action that computes the inherited 
attributes for a nonterminal A immediately before 
the occurrence of A in the body of the production. 

X ->  { inherited attributes of A } A  

2. Place the actions that compute a synthesized 
attribute for the head of a production at the end 
of the body of that production." [p. 331] 

A ->  { synthesized attributes of A }

α β

γ

"We consider [now] the more general case of an L-attributed SDD." [p. 331] 

"The rules for turning an L-attributed SDD into an SDT are as follows:



Implementing L-Attributed SDD's

"…we discuss the following methods for translating 
during parsing: 

6. Implement an SDT in conjunction an LR parser.   

… the SDT for an L-attributed SDD typically has 
actions in the middle of productions, and we cannot 
be sure during an LR parse that we are even in that 
production until its entire body has been 
constructed 

… [however] if the underlying grammar is LL, we can 
always handle both the parsing and translation 
bottom-up." [p. 338]



Bottom-up parsing of L-Attributed SDD's

"…given an L-attributed SDD on an LL grammar, we can adapt the 
grammar to compute the same SDD on the new grammar during an LR 
parse" [p. 348] 

1. "Start with the SDT […] which places embedded actions before each 
nonterminal to compute its inherited attributes and an action at 
the end of the production to compute synthesized attributes. 

2. Introduce into the grammar a marker nonterminal in place of 
each embedded action.  Each such place gets a distinct marker, 
and there is one production for any marker M, M -> 𝜀. 

3. Modify the action a if marker nonterminal M replaces it in some 
production A -> 𝛼 {a} 𝛽, and associate with M -> 𝜀 an action a' that 

(a) Copies, as inherited attributes of M, any attributes of A or 
symbols of 𝛼 that action a needs. 

(b) Computes the attributes in the same way as a, but makes 
those attributes be synthesized attributes of M" [p. 349]



Bottom-up parsing of L-Attributed SDD's

"…we shall implement the actions on 
the LR parsing stack, so the necessary 
attributes will always be available a 
known number of positions down the 
stack." [p. 349]



Example 5.25 [p. 349]

A -> { B.i = f(A.i); } B C 

becomes 

A -> M B C 

M -> {M.i = A.i; M.s = f(M.i); }
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Roadmap

We are going to look at examples 5.19 
(p. 335) and 5.26 (p. 349) in some 
detail.  The book revisits these 
examples in section 6.6.3. 

Helpful background is covered in 
sections 5.3 and 5.4 (pages 318 
through 337).



Example 5.19 (p. 335) 
S -> while ( C ) S1 

What are the semantics of this? 



Example 5.19 (p. 335) 
S -> while ( C ) S1 

What are the semantics of this?

true

false

S1C



S -> while ( C ) S1 

What are the semantics of this? 

Example 5.19 (p. 335) 

Label L1:

Code for C

Label L2:

Code for S1

S.next

s1.next

C.true C.false

entry



S -> while ( C ) S1 

What are the semantics of this? 

Example 5.19 (p. 335) 

Label L1:

Code for C

Label L2:

Code for S1

S.next

s1.next

C.true C.false

entry

"The inherited 
attribute S.next 

labels the 
beginning of the 
code that must be 
executed after S 

is finished."

"The synthesized 
attribute S.code is 
the [code] that 
[implements S]"

"The inherited 
attribute C.true 

labels the 
beginning of the 
code that must be 
executed if C is 

true."

"The inherited 
attribute C.false 

labels the 
beginning of the 
code that must be 
executed if C is 

false."

"The synthesized 
attribute C.code is the 

[code] that 
[implements C] and 

jumps either to C.true 
or to C.false, 

depending on whether 
C is true or false."

"The synthesized attribute S1.code 
is the [code] that [implements S1] 
and ends with a jump to S1.next"



S -> while ( 

     C ) 

     S1

Figure 5.28 (p. 336) 
SDT for while statement

{ L1 = new(); L2 = new(); 
  C.false = S.next; C.true = L2; 
} 
{ S1.next = L1; 
} 
{ S.code = label || L1 || C.code || 
  label || L2 || S1.code 
}



Example 5.26 [p. 349]
S -> while ( 
     C ) 
     S1

{ L1=new(); L2=new(); C.false=S.next; C.true=L2; } 
{ S1.next=L1; } 
{ S.code=label || L1 || C.code || label || L2 || S1.code} 



Example 5.26 [p. 349]
S -> while ( 
     M C ) 
     N S1 
M -> 𝜀 
N -> 𝜀

{ S.code=label || L1 || C.code || label || L2 || S1.code} 
{ L1=new(); L2=new(); C.false=S.next; C.true=L2; } 
{ S1.next=L1; }

? while ( M

S.next C.true

C.false

L1

L2

? will become S on reduction

L1 = new(); L2 = new(); 
C.true = L2; 
C.false = stack[top-3].next;

stack[top]stack[top-1]stack[top-2]stack[top-3]



Example 5.26 [p. 349]
S -> while ( 
     M C ) 
     N S1 
M -> 𝜀 
N -> 𝜀

{ S.code=label || L1 || C.code || label || L2 || S1.code} 
{ L1=new(); L2=new(); C.false=S.next; C.true=L2; } 
{ S1.next=L1; }

? while ( M C

S.next C.true C.code

C.false

L1

L2

C can appear in many 
productions; M ensures 
that attributes are in 
known positions on stack

? will become S on reduction



Example 5.26 [p. 349]
S -> while ( 
     M C ) 
     N S1 
M -> 𝜀 
N -> 𝜀

{ S.code=label || L1 || C.code || label || L2 || S1.code} 
{ L1=new(); L2=new(); C.false=S.next; C.true=L2; } 
{ S1.next=L1; }

? while ( M C ) N

S.next C.true C.code S1.next

C.false

L1

L2

S1.next=stack[top-3].L1

stack[top]stack[top-1]stack[top-2]stack[top-3]

? will become S on reduction



Example 5.26 [p. 349]
S -> while ( 
     M C ) 
     N S1 
M -> 𝜀 
N -> 𝜀

{ S.code=label || L1 || C.code || label || L2 || S1.code} 
{ L1=new(); L2=new(); C.false=S.next; C.true=L2; } 
{ S1.next=L1; }

? while ( M C ) N S1

S.next C.true C.code S1.next S1.code

C.false

L1

L2

S1.next=stack[top-3].L1

stack[top]stack[top-1]stack[top-2]stack[top-3]

? will become S on reduction



Roadmap

We will revisit how the semantics of 
flow-of-control statements can be 
expressed in section 6.6.3 Flow-of-
Control Statements. 

At that point we will learn the 
backpatching approach, which you will 
implement in your compiler.



§6.3 Types and Declarations



Type equivalence

Name equivalence: two types are 
equivalent if and only if they have the 
same name. 

Structural equivalence: two types are 
equivalent if and only if they have the 
same structure.  A type is structurally 
equivalent to itself (i.e. int is both name 
equivalent and structurally equivalent 
to int)



Name equivalence

int x = 3; 
int y = 5; 
int z = x * y; The type of z is int. 

The type of x * y is int. 
The names of the types are the 

same, so the assignment is 
legal.



Structural equivalence

struct S { int v; double w; }; 
struct T { int v; double w; }; 

int main() { 
  struct S x; 
  x.v = 1; x.w = 4.5; 
  struct T y; 
  y = x; 
  return 0; 
}

Under name equivalence the 
assignment is disallowed. 

Under structural equivalence 
the assignment is permitted. 

What does C do?

types, names and 
order of fields 

all align



C does not allow 
the assignment

bash-3.2$  gcc type.c  
type.c:9:5: error: assigning to 
'struct T' from incompatible type 
'struct S' 
  y = x; 
    ^ ~ 
1 error generated. 



Structural equivalence

struct S { int v; double w; }; 
struct T { int a; double b; }; 

int main() { 
  struct S x; 
  x.v = 1; x.w = 4.5; 
  struct T y; 
  y = x; 
  return 0; 
}

Should this be allowed?

types and order 
of fields align, 
but names differ



Consider…

struct Rectangular { double x; double y; }; 
struct Polar { double r; double theta; }; 

int main() { 
  struct Rectangular p; 
  p.x = 3.14; p.y = 3.14; 
  struct Polar q; 
  q = p; 
  return 0; 
}

Should this be allowed?



Interpretation matters

rectangular 
interpretation

polar 
interpretation



Our language uses name equivalence 
(use pointer to symbol table entry to identify type)

built-in types: 
primitive types: integer, Boolean, character 
non-primitive type: string 

user-defined types: 
record types have names 

type recType : [ real : x; real : y ] 
array types have names 

type arrType : 2 -> string 
function types have names 

type funType : real -> recType



Recursive records

A record type must allow a component to be 
of the same type as the type itself: 

type Node : [ integer : datum ; Node : rest ] 



Recursive records

A record type must allow a component to be 
of the same type as the type itself: 

type Node : [ integer : datum ; Node : rest ] 

Be careful how you process declaration: you 
need to ensure that the second occurrence of 
Node does not trigger an undefined name 


