CSE4-4-3
Com p tlers
Dr. Carl Ai.pkom':@.

alphonce@buffalo.edu
343 Davis Hall

character stream

Y

Lexical Analyzer

Phases of

|
Q token stream

Y
@0 m F E;i,@_r Syntax Analyzer

synta:ix: tree

Senmankic sl
Semantic Analyzer
&M&i' }SL3 syntaic tree

Symbol Table Intermediate Code Generator

|
intermediate representation

Machine-Independent
Code Optimizer

|
intermediate representation

Code Generator
Loyt ' rget-machine cod
PLQM’.T'Q 1@&; ta get. ma(v: e code

PO\SQ 5 an %Qx& Machine-Dependent

Code Optimizer

|
target-machine code

Y

Attribute grammars

 Attribute grammars provide a neater way of
encoding such information.

» Each syntactic rule of the grammar can be
decorated with:

— a set of semantic rules/functions
— a set of semantic predicates

Review.

Attributes

* We can associate with each symbol X of the
grammar a set of attributes A(X). Attributes are
partitioned into:

synthesized attributes S(X) — pass info up parse tree

inherited attributes |(X) — pass info down parse tree

Review.

Example

<assign> 2 <var> = <expr>

<expr>.expType <& <var>.actType

<expr> 2 <var>[2] + <var>[3]
<expr>.actType <& if (var[2].actType = int) and
(var[3] .actType = int)
then int
else real
<expr>.actType == <expr>.expType

<expr> > <var>

<expr>.actType <& <var>.actType
<expr>.actType == <expr>.expType

Syntactic rule

<var> 2> A | B | C Semantic rule/function
<var>.actType <& 1lookUp(<var>.string) Semantic predicate

Effects of the semantic

<assign>
J rules s showi U red.

expected
type = N actual
v | int <expr> type=
) Int
A
actual type = int
., <var> <var>{2] | <var>[3]
actual actual
. type = type =
actual type = int int int Suppose:
A = A + B Ais int
Bis int

This is the same @.XO\W\FL@.
skructure, buk now assume A
is of type real and B is of
%mﬂa tk,

<assign>

expected

type= cactial | e enerate code to do

v < > type =
real expr e .

/

actual type = real
\ <var> <var>{2] | <var>|[3]
actual actual
type = type =
actual type = real real int Suppose:
A = A + B Alis real
B is int

<assign> Grenerate error message. }

expected
type = < N actual
v | int <expr> type=
. real
A
actual type = int
., <var> <var>{2] | <var>[3]
actual actual
. type = type =
actual type = Int int real SUppOSG:
A = A + B Ais int
B is real

539\@1)«*%*@.{:&@.&
Definitions

"A syntax-directed definition (SDD) is
a context-free gqrammar together with
abtributes and rules. Abbributes are
associated with grammar svmbots and
rules are associated with produc&ov\s"

[p. 304]

Sjv\hxw‘lﬁir@.ﬂ%ed
Translabtion Schemes

"Svm&ax~d£re¢&ed Eranslation schemes
are a aemptemas«%arv notabtion to
syntax-directed definitions, [...] A
sw«%ax--dﬁma&d translation scheme
(SDT) is a context-free grammar with
program fragments embedded within
pradm&%mm bodies.” fp 324]

Sjmﬁaxwﬁireﬂﬁed
Translabtion Schemes

"Any SDT cain be Lm[ptémev\%ecl. bj first
building a parse tree and then
performing the actions n a [...] pre-
order traversal.” [p. 324

"iji;«catbj, SDT's are ngi.@.mem&aci
during parsing, without building a
parse kree." [p. 324]

Sjv\hxwﬁir@:%ed
Translabtion Schemes

"...the si;mpt@.s% SDD imgtemem&a&iom
occurs when we can parse the grammar
ba&%c)m“up and the SDD is S—abttributed.
In that case, we can conskruct an SDT
th which each action is ptaced ab the
end of the production and is executed
along with the reduction of the body to
the head of that pradu&&om" {[m 324

Sjv\hxwﬁir@:%ed
Translabtion Schemes

"If the attributes are all synthesized,
and the actions occur ot the ends of
the Frao’tw&%mms, then we can compute
the attributes for the head when we
reduce the bc’d‘ﬁ to the head.” {F‘ 3285]

Svm&ax~b£re¢i&ed Translakion Schemes

"We consider [how] the more qgeneral case of an L-attributed SDD." Lp. 331

"The rules for turiing an L-attributed SDD into an SDT are as follows:

1. Embed the action that computes the inherited
attributes for a nonterminal A immediately before
the occurrence of A in the bodj of the prodm&&&ow

2. Place the actions that compute a synthesized
attribute for the head of a production at the end
of the body of that production.” [p. 331]

S»jh&&)«*‘lﬁ&reaﬁed Translakion Schemes

"We consider [how] the more qgeneral case of an L-attributed SDD." Lp. 331]

"The rules for turiing an L-attributed SDD into an SDT are as follows:

1. Embed the action that computes the inherited
attributes for a nonterminal A immediately before
the occurrence of A in the bodj of the production.

X => a { inherited attributes of A t A f

2. Place the actions that compute a synthesized
attribute for the head of a production ot the end
of the bc;mciv of thak production.” [p. 331]

A->yi synthesized atbributes of A §

lmptemev\&ug L-Attributed SDD's

"..we discuss the following methods for translating
during parsing:

6. Im!ﬂemam& an SDT i conjunction an LR parser.

... the SDT for an L-attributed SDD typically has
actions in the middle of productions, and we cannot
be sure during an LR parse that we are even i thak
production until its entire body has been
consbructed

... [however] if the underlying grammar is LL, we can
always handle both khe parsing and Eranslabtion
bO&OM“%P." Dﬁ 33%]

Bottom-up parsing of L-Attributed SDD's

"...glven an L-attributed SDD on an LL grammar, we can adapt the
gramwmar to compute the same SDD on the hew grammar during an LR
parse” [p. 34%]

1. "Start with the SDT [...] which places embedded actions before each
nonterminal to compute its inherited attributes and an action at
the end of the production to compute synthesized attributes.

2. Introduce into the grammar a marker nonterminal in place of
each embedded action. Each such place gets a distinct marker,
and there is one production for any marker M, M —> .

3. Modify the action a i marker nonterminal M replaces it in some
production A -> «a {al B, and associate with M -> ¢ an action o that

(a) Copies, as inherited attributes of M, any attributes of A or
sjmbots of a that action a needs,

(b) Computes the attributes in the same way as a, but makes
those abtributes be svn&he_siz.ed attributes of m" fp. 349]

Bottom-up parsing of L-Attributed SDD's

"...we shall E;mpiemenﬁ the actions on
the LR parsing stack, so the necessary
abbribubes will atwajs be available a
lknown number of positions down the
stack." [p. 349]

| XO\MPL@ 5a2$ {P* 349]

A->{Bi=fAi)lIBC
becomes
A=->MBRB C

M= fMi = Ay Ms = (M),]

character stream

Y

Lexical Analyzer

Phases of

|
Q token stream

Y
@0 m F E;i,@_r Syntax Analyzer

synta:ix: tree

Senmankic sl
Semantic Analyzer
&M&i' }SL3 syntaic tree

Symbol Table Intermediate Code Generator

|
intermediate representation

Machine-Independent
Code Optimizer

|
intermediate representation

Code Generator
Loyt ' rget-machine cod
PLQM’.T'Q 1@&; ta get. ma(v: e code

PO\SQ 5 an %Qx& Machine-Dependent

Code Optimizer

|
target-machine code

Y

Qaadmap

We are going to look at examples 5.19
2 338) and 5.2¢6 2 349) in sowme
debail. The boolk revisits these
@.xam[zotes th section 6.6.3,

Helpful background is covered in
sections 5.3 and 5.4 (pages 31¥%
through 337).

- X&m Pi'@. 5«& 19 (P‘ 3 5)

S =» while { €) S

What are the semantics of this?

S =» while (€) &

What are the semantics of this?

@ lrue Lo

false

S =» while { €) S

What are the semantics of this?

\
5 Label L1:

P

Code for C

CSalse

Code for S:

‘mxampi.e -FF 19 (F’ 335)

: "The synthesized
S — tht@.) Sl atbtribute C.code is the
[code] that
what are the semamhm c;:wf i [mglomands C] and
 either to C.krue
or to Chalse,

>! Label L1: : C is brue or false.”

Code for C

Lobel L2: | "The Unherited
Code for S Labels the
beginning of the
code that must be
"The synthesized attribute Sicode f executed if C is

is the [code] that [implements S.] false."
and ends with a jump to Simext”

Figure §.2% (p. 336)

SDT for while statement

S =» while ({ Ll = new(); L2 = new();
Chalse = Smext; C.brue = L2;

?

C3 [Simext = L1;
}
S1 ! s«code = Llabel || L1 || C.code ||

Label || L2 || S1.code

%

Example .26 [p. 349]

S - while {{ Li=new(); L2znew(); Chalse=Smext; C.true=L2; }
C Y | Simexk=Ll; i
Sy { Sccode=zlabel || L1 || C.code || Label || L2 |] Si.codel

XOLMFLQ 5112-@ {Fq 34’93

S —=» while (

MC)

N S | Swcode=label || L1 || C.code || Label || L2 || Sicode}
M=>c | Llznew(); LRz=new(); Cholse=Smnext; Clrue=L2;
N=»c 1 Sihext=Ll;}

stagk [top-3]iistack [t ep=2aigiEak [{to stack[top]

? while (M

S.next |« »l C.trle

“‘
*

‘e
e
‘e
.,
N,
..... Ol
Ta, *
.......... S
............ A sl sy
gansn
o []
n
.
.
.

. il
A BT

Ll = new(); L2 = new();
© masE) = 4
C.false = stack[top-3].next;

XQMFLQ 5112-@ {Fq 34’93

S —=» while (

MC)

N S | Swcode=label || L1 || C.code || Label || L2 || Sicode}
M=>c | Llznew(); LRz=new(); Cholse=Smnext; Clrue=L2;
N -» ¢ 1 Simexk=El: ¢

C cal appear L many
produc&ions; M ensures
that abtributes are in
khnowin Posi&iams on stack

M @

S inexXt e vl C.true | C.code

“‘
*

.
W,

.

.

‘e

Ya
L
e,
L
ay Q
"
e,
Tay

| C o false

L1

M —->» ¢

XQMFLQ 5112-@ {Fq 34’93

S —=» while (
MmC
N S | Swcode=label || L1 || C.code || Label || L2 || Sicode}
| Liznew(); L2z=new(); Clalse=Smext; C.btrue=L2; }

{ Simext=L1; i

L2

stacklBop-81 ' stack[top-2] . .stack el stack[top]
M &) I\
SnextUmiE S v| C.uge il Ciacode w| S1.next
., > PSR lic o :
Tal 4 P ——
oy

XQMFLQ 5112-& {Pq 34’93

S —=» while (

MC)

N S | Swcode=label || L1 || C.code || Label || L2 || Sicode}
M=>c | Llznew(); LRz=new(); Cholse=Smnext; Clrue=L2;
N -» ¢ 1 Simexk=El: ¢

stack|@op-23] " stack[top—2] .stack FoGpatd] stack[top]

M C) N S1
SnextUmiE S v| C.true | C.code ~ S1.next | S1.code
................................. :,.:'f...... Ooiaidiern : 3
; T 4 AT X) 0
W ED

f?;aadmap

We will revisit how the semankics of
flow-of-control statements can be
expressed in section 6.6.3 Flow-of-
Control Staktements,

At that me% we will learn the
baci&*pa&&hMg approaah, which you will
E,m[ptemem% i your tam[zs&t@n

§6.3 Types and Declarations

TUP@. @.quivalahﬂe

Name equivatemce: fwo Ev[pes are
equivalent if and only i they have the
same ame,

Skructural @.qmvai.ewte: bwo Ejpes are
equivalent f and only i they have the
same structure. A %3[@@. LS sEruc&umLtv
equivalent to tkself (i.e. int is both name
equivalent and sEru&MraLDj equivalent
to nk)

Navwe. aqu&v&ience

bk x = 3;
tiak y = 8 . |
it z = x * v,< The &fjf’@- oﬂf z s int.
The bype of x * y is Wnt.
The names of the types are the
samwe, so the assighment is
Lleqgal.

Skruckural equ&v&temae

68 ,)
types, names ahd

Eruck ik v; doubl) 57
struct § { int v; double w } <= order of fields

struct T { tnt v; double w; {;

all align

ink main() { - \
skruck S x; Umdéj.r Mo\mi éqt:jml.im:e;he
X = Lok iia i assignment ts Adisallowed.,
SCrasm p Uinder skructural @;qmvai.@.m“:e
3.7 the assignument is permitted.
returi ©;

§ What does C do?

C does not allow
the assighment

bash—-3.2% qgcc type.cC

type.c:9:5: error: assigning to
'struct T' from incompatible type
'struct S

Y 7 A
A’\l

1 error generated.

Skruckural equw&i@.m‘:‘e

struct § { ink v; double w; {;
struct T { int a; double b; {;

ik main) {
skructk S x;
X = 17 X' = e 08
skructkt T Y

”

Empes and order

<= of fields align,
but names differ

“

J

1
Y =K T < Should this be allowed?]

returi O;

Cownsider...

struct Rectangular { double x; double Yy 3
struct Polar { double r; double theta; {;

ik main()
struct Rectangular p;
px = 3.14; py = 3.14;
skruct Polar 9/
q = p ‘1 Should this be allowed?]
returi O,

Inker preﬁa&mv\ nakbters

po Lar
unker preﬁo&im

rea&v\gutw
thter pre&aﬁom

Our language uses name equivalence
(use p«oih&er to sjmbot table eMEr-j ko Ldem?:ifvj Evpe.)

o builb-in types:
o primitive types: integer, Boolean, character
o non-primitive type: string
o user—defined types:
o record bypes have hames
o type recType : [real : x; real : y]
o array types have names
o type arrType : 2 -> string
o function types have names
o type funType : real -» recType

Recursive records

A record &jpe nmust allow a ﬁompon@m& to be
of the same type as the type ikself:

type Node : [integer : datum ; Node : rest g

Recursive records

A record Evpe nmust allow a ﬁompon@\% to be
of the same type as the type tksels:

type Node : [integer : datum ; . resk]

Be careful how you process declaration: you
need to ensure that the second occurrence of
Node does not brigger an undefined name

