
CSE443
Compilers
Dr. Carl Alphonce

alphonce@buffalo.edu
343 Davis Hall

Phases of
a

compiler

Figure 1.6,
page 5 of text

Semantic
analysis

Attribute grammars

• Attribute grammars provide a neater way of
encoding such information.

• Each syntactic rule of the grammar can be
decorated with:
– a set of semantic rules/functions
– a set of semantic predicates

Review

Attributes
• We can associate with each symbol X of the

grammar a set of attributes A(X). Attributes are
partitioned into:

synthesized attributes S(X) – pass info up parse tree

inherited attributes I(X) – pass info down parse tree

Review

Example
<assign>  <var> = <expr>
<expr>.expType  <var>.actType

<expr>  <var>[2] + <var>[3]
<expr>.actType  if (var[2].actType = int) and
	 	 	 (var[3].actType = int)
	 	 	 then int
	 	 	 else real
<expr>.actType == <expr>.expType

<expr>  <var>
<expr>.actType  <var>.actType
<expr>.actType == <expr>.expType

<var>  A | B | C
<var>.actType  lookUp(<var>.string)

Syntactic rule
Semantic rule/function
Semantic predicate

Review

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

Suppose:
A is int
B is int

actual type = int

actual type = int

expected
type =
int

actual
type =
int

actual
type =
int

actual
type =
int

Effects of the semantic
rules is shown in red.

Review

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = real

actual type = real

expected
type =
real

actual
type =
real

actual
type =
int

actual
type =
real

This is the same example
structure, but now assume A
is of type real and B is of

type int.

Generate code to do
conversion.

Suppose:
A is real
B is int

Review

A = A + B

<var> <var>[2] <var>[3]

<expr>

<assign>

actual type = int

actual type = int

expected
type =
int

actual
type =
int

actual
type =
real

actual
type =
real

Generate error message.

Suppose:
A is int

B is real

Review

Syntax-Directed
Definitions

"A syntax-directed definition (SDD) is
a context-free grammar together with
attributes and rules. Attributes are
associated with grammar symbols and
rules are associated with productions"
[p. 304]

Syntax-Directed
Translation Schemes
"Syntax-directed translation schemes
are a complementary notation to
syntax-directed definitions. […] A
syntax-directed translation scheme
(SDT) is a context-free grammar with
program fragments embedded within
production bodies." [p. 324]

Syntax-Directed
Translation Schemes
"Any SDT can be implemented by first
building a parse tree and then
performing the actions in a […] pre-
order traversal." [p. 324]

"Typically, SDT's are implemented
during parsing, without building a
parse tree." [p. 324]

Syntax-Directed
Translation Schemes
"…the simplest SDD implementation
occurs when we can parse the grammar
bottom-up and the SDD is S-attributed.
In that case, we can construct an SDT
in which each action is placed at the
end of the production and is executed
along with the reduction of the body to
the head of that production." [p. 324]

Syntax-Directed
Translation Schemes

"If the attributes are all synthesized,
and the actions occur at the ends of
the productions, then we can compute
the attributes for the head when we
reduce the body to the head." [p. 325]

Syntax-Directed Translation Schemes

1. Embed the action that computes the inherited
attributes for a nonterminal A immediately before
the occurrence of A in the body of the production.

2. Place the actions that compute a synthesized
attribute for the head of a production at the end
of the body of that production." [p. 331]

"We consider [now] the more general case of an L-attributed SDD." [p. 331]

"The rules for turning an L-attributed SDD into an SDT are as follows:

Syntax-Directed Translation Schemes

1. Embed the action that computes the inherited
attributes for a nonterminal A immediately before
the occurrence of A in the body of the production.

X -> { inherited attributes of A } A

2. Place the actions that compute a synthesized
attribute for the head of a production at the end
of the body of that production." [p. 331]

A -> { synthesized attributes of A }

α β

γ

"We consider [now] the more general case of an L-attributed SDD." [p. 331]

"The rules for turning an L-attributed SDD into an SDT are as follows:

Implementing L-Attributed SDD's

"…we discuss the following methods for translating
during parsing:

6. Implement an SDT in conjunction an LR parser.

… the SDT for an L-attributed SDD typically has
actions in the middle of productions, and we cannot
be sure during an LR parse that we are even in that
production until its entire body has been
constructed

… [however] if the underlying grammar is LL, we can
always handle both the parsing and translation
bottom-up." [p. 338]

Bottom-up parsing of L-Attributed SDD's

"…given an L-attributed SDD on an LL grammar, we can adapt the
grammar to compute the same SDD on the new grammar during an LR
parse" [p. 348]

1. "Start with the SDT […] which places embedded actions before each
nonterminal to compute its inherited attributes and an action at
the end of the production to compute synthesized attributes.

2. Introduce into the grammar a marker nonterminal in place of
each embedded action. Each such place gets a distinct marker,
and there is one production for any marker M, M -> 𝜀.

3. Modify the action a if marker nonterminal M replaces it in some
production A -> 𝛼 {a} 𝛽, and associate with M -> 𝜀 an action a' that

(a) Copies, as inherited attributes of M, any attributes of A or
symbols of 𝛼 that action a needs.

(b) Computes the attributes in the same way as a, but makes
those attributes be synthesized attributes of M" [p. 349]

Bottom-up parsing of L-Attributed SDD's

"…we shall implement the actions on
the LR parsing stack, so the necessary
attributes will always be available a
known number of positions down the
stack." [p. 349]

Example 5.25 [p. 349]

A -> { B.i = f(A.i); } B C

becomes

A -> M B C

M -> {M.i = A.i; M.s = f(M.i); }

Phases of
a

compiler

Figure 1.6,
page 5 of text

Semantic
analysis

Roadmap

We are going to look at examples 5.19
(p. 335) and 5.26 (p. 349) in some
detail. The book revisits these
examples in section 6.6.3.

Helpful background is covered in
sections 5.3 and 5.4 (pages 318
through 337).

Example 5.19 (p. 335)
S -> while (C) S1

What are the semantics of this?

Example 5.19 (p. 335)
S -> while (C) S1

What are the semantics of this?

true

false

S1C

S -> while (C) S1

What are the semantics of this?

Example 5.19 (p. 335)

Label L1:

Code for C

Label L2:

Code for S1

S.next

s1.next

C.true C.false

entry

S -> while (C) S1

What are the semantics of this?

Example 5.19 (p. 335)

Label L1:

Code for C

Label L2:

Code for S1

S.next

s1.next

C.true C.false

entry

"The inherited
attribute S.next

labels the
beginning of the
code that must be
executed after S

is finished."

"The synthesized
attribute S.code is
the [code] that
[implements S]"

"The inherited
attribute C.true

labels the
beginning of the
code that must be
executed if C is

true."

"The inherited
attribute C.false

labels the
beginning of the
code that must be
executed if C is

false."

"The synthesized
attribute C.code is the

[code] that
[implements C] and

jumps either to C.true
or to C.false,

depending on whether
C is true or false."

"The synthesized attribute S1.code
is the [code] that [implements S1]
and ends with a jump to S1.next"

S -> while (

 C)

 S1

Figure 5.28 (p. 336)
SDT for while statement

{ L1 = new(); L2 = new();
 C.false = S.next; C.true = L2;
}
{ S1.next = L1;
}
{ S.code = label || L1 || C.code ||
 label || L2 || S1.code
}

Example 5.26 [p. 349]
S -> while (
 C)
 S1

{ L1=new(); L2=new(); C.false=S.next; C.true=L2; }
{ S1.next=L1; }
{ S.code=label || L1 || C.code || label || L2 || S1.code}

Example 5.26 [p. 349]
S -> while (
 M C)
 N S1
M -> 𝜀
N -> 𝜀

{ S.code=label || L1 || C.code || label || L2 || S1.code}
{ L1=new(); L2=new(); C.false=S.next; C.true=L2; }
{ S1.next=L1; }

? while (M

S.next C.true

C.false

L1

L2

? will become S on reduction

L1 = new(); L2 = new();
C.true = L2;
C.false = stack[top-3].next;

stack[top]stack[top-1]stack[top-2]stack[top-3]

Example 5.26 [p. 349]
S -> while (
 M C)
 N S1
M -> 𝜀
N -> 𝜀

{ S.code=label || L1 || C.code || label || L2 || S1.code}
{ L1=new(); L2=new(); C.false=S.next; C.true=L2; }
{ S1.next=L1; }

? while (M C

S.next C.true C.code

C.false

L1

L2

C can appear in many
productions; M ensures
that attributes are in
known positions on stack

? will become S on reduction

Example 5.26 [p. 349]
S -> while (
 M C)
 N S1
M -> 𝜀
N -> 𝜀

{ S.code=label || L1 || C.code || label || L2 || S1.code}
{ L1=new(); L2=new(); C.false=S.next; C.true=L2; }
{ S1.next=L1; }

? while (M C) N

S.next C.true C.code S1.next

C.false

L1

L2

S1.next=stack[top-3].L1

stack[top]stack[top-1]stack[top-2]stack[top-3]

? will become S on reduction

Example 5.26 [p. 349]
S -> while (
 M C)
 N S1
M -> 𝜀
N -> 𝜀

{ S.code=label || L1 || C.code || label || L2 || S1.code}
{ L1=new(); L2=new(); C.false=S.next; C.true=L2; }
{ S1.next=L1; }

? while (M C) N S1

S.next C.true C.code S1.next S1.code

C.false

L1

L2

S1.next=stack[top-3].L1

stack[top]stack[top-1]stack[top-2]stack[top-3]

? will become S on reduction

Roadmap

We will revisit how the semantics of
flow-of-control statements can be
expressed in section 6.6.3 Flow-of-
Control Statements.

At that point we will learn the
backpatching approach, which you will
implement in your compiler.

§6.3 Types and Declarations

Type equivalence

Name equivalence: two types are
equivalent if and only if they have the
same name.

Structural equivalence: two types are
equivalent if and only if they have the
same structure. A type is structurally
equivalent to itself (i.e. int is both name
equivalent and structurally equivalent
to int)

Name equivalence

int x = 3;
int y = 5;
int z = x * y; The type of z is int.

The type of x * y is int.
The names of the types are the

same, so the assignment is
legal.

Structural equivalence

struct S { int v; double w; };
struct T { int v; double w; };

int main() {
 struct S x;
 x.v = 1; x.w = 4.5;
 struct T y;
 y = x;
 return 0;
}

Under name equivalence the
assignment is disallowed.

Under structural equivalence
the assignment is permitted.

What does C do?

types, names and
order of fields

all align

C does not allow
the assignment

bash-3.2$ gcc type.c
type.c:9:5: error: assigning to
'struct T' from incompatible type
'struct S'
 y = x;
 ^ ~
1 error generated.

Structural equivalence

struct S { int v; double w; };
struct T { int a; double b; };

int main() {
 struct S x;
 x.v = 1; x.w = 4.5;
 struct T y;
 y = x;
 return 0;
}

Should this be allowed?

types and order
of fields align,
but names differ

Consider…

struct Rectangular { double x; double y; };
struct Polar { double r; double theta; };

int main() {
 struct Rectangular p;
 p.x = 3.14; p.y = 3.14;
 struct Polar q;
 q = p;
 return 0;
}

Should this be allowed?

Interpretation matters

rectangular
interpretation

polar
interpretation

Our language uses name equivalence
(use pointer to symbol table entry to identify type)

built-in types:
primitive types: integer, Boolean, character
non-primitive type: string

user-defined types:
record types have names

type recType : [real : x; real : y]
array types have names

type arrType : 2 -> string
function types have names

type funType : real -> recType

Recursive records

A record type must allow a component to be
of the same type as the type itself:

type Node : [integer : datum ; Node : rest]

Recursive records

A record type must allow a component to be
of the same type as the type itself:

type Node : [integer : datum ; Node : rest]

Be careful how you process declaration: you
need to ensure that the second occurrence of
Node does not trigger an undefined name

