CSE4-4-3
Com p tlers
Dr. Carl Ai.pkom':@.

alphonce@buffalo.edu
343 Davis Hall

character stream

Phases of

& token stream

compiler

syntax tree

IM%Q—‘Q WA QC&L&&Q Semantic Analyzer
Q@. P?QSQM%&% Lo (IQ) ’ syntax tree
S Pﬁﬁ b{iﬁ&& E;C) A Intermediate Code Generator

| d intermediate representation
A AN T
Machine-Independent

qeneration Code Optimizer

intermediate representation

Code Generator

t’: iguré 1 ‘6 5 target-machine code

Machine-Dependent

PQSQ 5 O‘f %QX& Code Optimizer

target-machine code

Y

Three—~address code

o The DAG does wnot say av\:jﬁki;sr\g about
how Ehe ﬁompuﬁaﬁam should be carried
ouk,

o For example, there could be one
tnskruction to do this computation:
x*v*a
as

%1:)&*‘3*2.

Three—~address code

o In Ehree-address code itnskruckions
can have no more thawn one operaﬁor
o the right of an assignment.

o x+ryxz must be broken inko kwo
tnskrucktions:
bl = Y * z

&zzx*‘&l

Three address code represev\&afzmm

Three address code instructions
(see 6.2.1, pages 364-5)

9,
N

. X X
nouwn

NE D 5.5
3
AL T

. goto L
f x qoto L / YFalse x qoto L
U x relop y goto L
function calls:
- param x
- call Py
-y= call p
- return y
¥, N2 v[i] and x[i] = Y
o) x:&v,x:*v,*x:v

N Oeth B T

Three address code inskruckions
(see 6.2.1, pages 364-5)

=

. X=yopz
x = op Yy
. X2y
. goto L
. ¥ x qoto L / YFalse x qoto L
. x relop y goto L
7. function calls:
- param x
- call P,
-y= call p
- returi y
¥ v[n] and x[i] = 3 Wé
Oy = &v, = Ry, kX = :

AV

L]

W

o b

© 2020 Carl Alphonce - Qaproduehom of this mo&emat Ls proknba&ed w;&hou}: &ke au&hors t:onsem&

Qﬁpre.sen&aﬁom OF&&OMS

"The description of three-address
nskructions spe&bﬁes the components
of each type of nstruction, bub it does
not s[pecb‘f:’ the representation of these
instructions in a data structure.”

fP 366]

Qu&dru,ptes

Instructions have four fields:
op, argl, arqz, resulk

Examgte: bz = a + b s r@.presem&ecs& aSs

op argl | arg2 | resulk

+ a &z &3

Exampt&: bo = - € is rapr@.sev\%ecl as

op argl | argR | resulk

YWLIAWS | C | ks

Variables tn rﬁpresemﬁaﬁmm

Identifiers would be pointers to

svmbot table enkries. Compiler-
inkroduced temporaries can be added

o Ehe svmboi table.

B

&rgl

arqgl

resulk

e

—> entry for a

—> entry for b

—> entry for b3

¥ rE;FL@.s

Instructions have three fields:
op, arqgl, argl

Examyi.e:
b = ...
&3 = a *+ &z
Ls r&presen&ed Qs

line op arqgl argl

5 computation of b

6 + Qa (5)

Indirect Eripms

Because order matters (due to embedded
references instead of explicit variables) it is
more challenging to rearrange hskructions
with triples than with quaciruptes.

Indirect triples allow for easier reordering
(see page 369).

Indirect ‘T‘mpi.es

Instructions have three fields:
op, argl, argz

Exampt@.z
E> 2. Rearranging instructions changes the
&3 — Ez

Ls represes»\&ed as

LASEETTCELOW a.wm,) conteints, lux the

index tnstruction line C}F &TS 1 m‘gz

72 & 5 computation of b2

& 6 . *‘ a ((72))

Static Single Assignment (SSA)

an additional constraint on the three address code

1) Each variable is assigned to exactly once. Occurrences
of the same variable are subscripted to make them unique.

X =21 + 1 X1 =217+ 1
3::5*2, 31:::5*2,
X:Z*x-r-v Xz:Z*X:L*‘jl

y=y+l g2 =g+ L

Static Single Assignment (SSA)

an additional conskraink on the Ehree address code

1) Each variable is assigned to exactly
once.

2) Need ¢ function to merge split variables:

f () then { x =a telse{ x=b}
v:x

With SSA:
Lf(ﬁ)%b«xem{xlza}etse{m:b}
s ¢(X1, K2)

¢ function
&mptemav\%aﬁom

In Yy = Ppx1,x2) s&m[ai,:j lek x1 and x2 be
bound to the same address.

Typical prajea& Erajec&ory

o Sprm& 1: char skream —» LEXER -» Foken
skream

o Sprim& 2: PARSER builds svmbcﬁ. table,
checks for undefined or mulkiply defined
names from token stream.

o Sprint 3: PARSER will also perform type
checking and qgenerate intermediate code,

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

type information

o Whal information does a type convey?

o How is bype information used during compilation?

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&e& without the author's consent

type information

o What information does a type convey? '
- bype indicates size
- bype indicates storage Location
(o) primitives: either stack or heap
(P) records: on heap (via poim&&r)
() arrays: on heap (via pointer)
() functions: code in static, locals on stack
o How is type information used during compilation?

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

type information

o What information does a type «a:c;w\vev;?'
- bype indicates size |
- bype indicates storage location
(o) primitives: either stack or heap
(D) records: on ka&g (via F?OLME@.r)
() arrays: on heap (via pointer)
(A) functions: code in static, locals on stack
o How is bype information used during compilation?
-~ determines how to lay out records, arrays,
thvocation records in Mermory
- determines how to translate names in program to
Mermory accesses
- debermines which tnskructions ko use to manipulate
values i mMemory

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Stzes of bypes

o ink: 32 biks (2's complement)

o real: 64 bits (IEEE 754)

o Boolean: ¥ biks (T8p: machine depenciehﬁ)
o character: ¥ bik (ASCII)

o address: &4 biks

© 2020 Carl Alphonce - Reproduction of this material is Prokibi&e& without the author's consent

Stzes/layouts of values of bypes

o type string: 1 -> character

® 4 bv&es + lenqgth of string * size
of character (= 1 byte)

o # of dimensions is parE of Ev!m

size of dimension 1

() (1) (2) | (3) (4)

..

https: //enwikipedio.org/wiki/VAX

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

https://en.wikipedia.org/wiki/VAX

Arrav Lavouﬁ LA Mermory

Two Qp%mms:
o rowwmajor
o coi.umm-major

Textboole discusses on page 3EL; TOW-
major and column-ma jor refer to two-
dimensional arrays, but can be generalized
for arrays with more dimensions.

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Row-ma fjor
ArTay ijau,&

What is the size of an X-
dimensional array of type T?

sizes of dimensions (5:): X*4 bytes
daka: (Micx Si) * sizeOf(T)

(plus padding for real to qet to
proper bouv\d&rv)

Eixam?i.a shows kwo-dimensional
array (2 rows, 3 columns)

© 2020 Carl Alphonce - Reproduction of this material is prohtbited

o
¢ 42 stze Of
Fabere TR S &rs&
____________________ O dimension
2
o
s sLze 0{
--- second
o dimension

Column-major | S

o size of
Array Lavou&] il
____________________ © . dimension
&
What is the size of an X- o
dimensional array of type T7 o size of
""""""""""""""""""""""""" secoihd
> dimension

sizes of dimensions (5): X*x4 bytes

daba: (Tix S * sizeOf(T)

Exampl& shows bkwo-dimensional
array (2 rows, 3 columns)

© 2020 Carl Alphonce - Reproduction of this material is prohtbited

Variables and memory

o Variables have names in our high level
programs

o Namwes Aol exisk abk runtime

@ Variables are allocated space in a block of
memory

o local variables have space in a skacke
frame (o, vocation record)

o array cells and record members have
space in heap-allocated block of memory

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Variables and memory

o Every use of a variable is translated inko an
address by the compiler...

..but not an absolute address - we have no
idea where i memory things will be loaded!

o For every allocated block of memory there is
a base/reference address.

o Variables housed within each block have a
Locakion i bthe blocke Ehak is to the
base/reference address.

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Variables and memory

o The relakive address is @.xpresseci as aln
from the base/reference address.

o The offset is determined by

o where obther variables in the blockk are
Located,

o how much space is needed ko hold the
variable's type of value, and

o whether or not we need to align the
starting address on a specific boundary,

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

base address smmmmmmentll

Arr&js "
c:ff;e& (62 for size
ot rirst dimension

What is the size of a mulki-
dimensional array of type T?

sizes of dimensions (Si): Xx4 bykes

data: (Tr;,ex SL) * sgzﬁgnﬂj‘) address

for size of second

: : dimension (and
assume sizeOf(T) is 1 offset 4

address for a(0,0): offscl ¥ mummmeenth
address for a(o,1): offset 9

address for a(02): offset 10 v
address for a(1,0): offset 11 e

ekc.

© 2020 Carl Alphonce - errodu.t&io@a of this material is ¢

Se:opes

dblock — T

{ SE&&R}F’MS!&(O“H:SQ&); }
declaration-List ']’

{ 0{%5&&:%&(:%@030; }

(S < (o0]
1 1 1
+ + +—
(b} (] (&}
(0] (0] wn
e Y= Y-
Yy— Y- Y—
{ [° inkeger : x7, jo]
push offset = 8 onto stack
(o)
K — N
I [I
P oveal @ xaSo il }
o7 (b b
s 0 0
i Y— u—
o Y— Y—

(@) (@)
pop offset = 8 from stack

push offset = 8 onto stack

o6} (@)}
Il I

{ [CBoolean : 4o ; character :
wn wn

(WED

o

pop offset = 8 from stack

!

N
offset = 10

| S}

dblocks (6.3.8 and 6.3.6)

records (in separate symbol table), sequence of declarations ot start of sblock

integer: x

integer: Y

© 2020 Carl Alphonce - Reproduction of this

nteger: x

integer: Y

Since declarations must be qgathered toqether akt
the start of an sblock, and cannct themselves be
directly nested: keep running offset, but remember old
offset when entering embedded scope.

integer: x

integer: Y

Boolean: y

character: z

material is Proki,i,&ed without the aubthor's consent

