
CSE443
Compilers
Dr. Carl Alphonce

alphonce@buffalo.edu
343 Davis Hall

Phases of
a

compiler

Figure 1.6,
page 5 of text

Intermediate
Representation (IR):

specification
and

generation

Three-address code

The DAG does not say anything about
how the computation should be carried
out.

For example, there could be one
instruction to do this computation:

x+y*z
as in,

t1 = x + y * z

In three-address code instructions
can have no more than one operator
on the right of an assignment.

x+y*z must be broken into two
instructions:

t1 = y * z
t2 = x + t1

Three-address code

Three address code representation

t1 = b - c
t2 = a * t1
t3 = a + t2
t4 = t1 * d
t5 = t3 + t4

+

+ *

-

*

a

cb

dt1

t2

t3 t4

t5

"Three-address code is a linearized
representation of … a DAG in which

explicit names correspond to the interior
nodes of the graph." [p. 363]

Three address code instructions
(see 6.2.1, pages 364-5)

1. x = y op z
2. x = op y
3. x = y
4. goto L
5. if x goto L / ifFalse x goto L
6. if x relop y goto L
7. function calls:

- param x
- call p, n
- y = call p
- return y

8. x = y[i] and x[i] = y
9. x = &y, x = *y, *x = y

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Three address code instructions
(see 6.2.1, pages 364-5)

1. x = y op z
2. x = op y
3. x = y
4. goto L
5. if x goto L / ifFalse x goto L
6. if x relop y goto L
7. function calls:

- param x
- call p, n
- y = call p
- return y

8. x = y[i] and x[i] = y
9. x = &y, x = *y, *x = y

We'll start with these.

We'll spend significant time
on function calls later.

We'll explore these as
needed later on.

Representation options

"The description of three-address
instructions specifies the components
of each type of instruction, but it does
not specify the representation of these
instructions in a data structure."

[p. 366]

Quadruples
Instructions have four fields:

op, arg1, arg2, result

Example: t3 = a + t2 is represented as

op arg1 arg2 result

+ a t2 t3

op arg1 arg2 result

minus c t4

Example: t4 = - c is represented as

Variables in representation

Identifiers would be pointers to
symbol table entries. Compiler-
introduced temporaries can be added
to the symbol table.

op arg1 arg2 result

+ —> entry for a —> entry for t2 —> entry for t3

Triples
Instructions have three fields:

op, arg1, arg2

Example:
t2 = …
t3 = a + t2

is represented as

line op arg1 arg2

5 computation of t2

6 + a (5)

Indirect triples

Because order matters (due to embedded
references instead of explicit variables) it is
more challenging to rearrange instructions
with triples than with quadruples.

Indirect triples allow for easier reordering
(see page 369).

index instruction line op arg1 arg2

72 5 5 computation of t2

73 6 6 + a ((72))

Indirect Triples
Instructions have three fields:

op, arg1, arg2

Example:
t2 = …
t3 = a + t2

is represented as

Rearranging instructions changes the
instruction array contents, but the

instructions themselves do not change.

Static Single Assignment (SSA)
an additional constraint on the three address code

1) Each variable is assigned to exactly once. Occurrences
of the same variable are subscripted to make them unique.

x1 = r + 1

y1 = s * 2

x2 = 2 * x1 + y1

y2 = y1 + 1

x = r + 1

y = s * 2

x = 2 * x + y

y = y + 1

"[SSA] is an intermediate representation that facilitates certain
code optimizations." [p. 369]

Static Single Assignment (SSA)
an additional constraint on the three address code

1) Each variable is assigned to exactly
once.

2) Need 𝜙 function to merge split variables:

if (e) then { x = a } else { x = b }
y = x

With SSA:
if (e) then { x1 = a } else { x2 = b }
y = 𝜙(x1 , x2)

𝜙 function
implementation

In y = 𝜙(x1,x2) simply let x1 and x2 be
bound to the same address.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Typical project trajectory

Sprint 1: char stream -> LEXER -> token
stream

Sprint 2: PARSER builds symbol table,
checks for undefined or multiply defined
names from token stream.

Sprint 3: PARSER will also perform type
checking and generate intermediate code.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

type information
What information does a type convey?

How is type information used during compilation?

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

type information
What information does a type convey?
- type indicates size
- type indicates storage location

(a) primitives: either stack or heap
(b) records: on heap (via pointer)
(c) arrays: on heap (via pointer)
(d) functions: code in static, locals on stack

How is type information used during compilation?

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

type information
What information does a type convey?
- type indicates size
- type indicates storage location

(a) primitives: either stack or heap
(b) records: on heap (via pointer)
(c) arrays: on heap (via pointer)
(d) functions: code in static, locals on stack

How is type information used during compilation?
- determines how to lay out records, arrays,

invocation records in memory
- determines how to translate names in program to

memory accesses
- determines which instructions to use to manipulate

values in memory

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Sizes of types

int: 32 bits (2's complement)

real: 64 bits (IEEE 754)

Boolean: 8 bits (TBD: machine dependent)

character: 8 bit (ASCII)

address: 64 bits

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Sizes/layouts of values of types

type string: 1 -> character

4 bytes + length of string * size
of character (= 1 byte)

of dimensions is part of type

size of dimension 1
(integer)

(0) (1) (2) (3) (4)

0 0 0 5 V A X E S

https://en.wikipedia.org/wiki/VAX

https://en.wikipedia.org/wiki/VAX

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Array layout in memory

Two options:

row-major

column-major

Textbook discusses on page 382; row-
major and column-major refer to two-
dimensional arrays, but can be generalized
for arrays with more dimensions.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Row-major
array layout

What is the size of an X-
dimensional array of type T?

sizes of dimensions (Si): X*4 bytes

data: (∏i∈X Si) * sizeOf(T)
(plus padding for real to get to
proper boundary)

Example shows two-dimensional
array (2 rows, 3 columns)

0
size of
first

dimension

0

0

2

0
size of
second

dimension

0

0

3

a(0,0)

first rowa(0,1)

a(0,2)

a(1,0)

second rowa(1,1)

a(1,2)

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Column-major
array layout

What is the size of an X-
dimensional array of type T?

sizes of dimensions (Si): X*4 bytes

data: (∏i∈X Si) * sizeOf(T)

Example shows two-dimensional
array (2 rows, 3 columns)

0
size of
first

dimension

0

0

2

0
size of
second

dimension

0

0

3

a(0,0)
first col

a(1,0)

a(0,1)
second col

a(1,1)

a(0,2)
third col

a(1,2)

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Variables and memory
Variables have names in our high level
programs

Names don't exist at runtime

Variables are allocated space in a block of
memory

local variables have space in a stack
frame (a.k.a. invocation record)

array cells and record members have
space in heap-allocated block of memory

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Variables and memory

Every use of a variable is translated into an
address by the compiler…

…but not an absolute address - we have no
idea where in memory things will be loaded!

For every allocated block of memory there is
a base/reference address.

Variables housed within each block have a
location in the block that is relative to the
base/reference address.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Variables and memory
The relative address is expressed as an
offset from the base/reference address.

The offset is determined by

where other variables in the block are
located,

how much space is needed to hold the
variable's type of value, and

whether or not we need to align the
starting address on a specific boundary.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Arrays

What is the size of a multi-
dimensional array of type T?

sizes of dimensions (Si): X*4 bytes

data: (∏i∈X Si) * sizeOf(T)

assume sizeOf(T) is 1

0
size of
first

dimension

0

0

2

0
size of
second

dimension

0

0

3

a(0,0)

first rowa(0,1)

a(0,2)

a(1,0)

second rowa(1,1)

a(1,2)

base address
and

offset (0) for size
of first dimension

address
for size of second
dimension (and

offset 4)

address for a(0,0): offset 8

address for a(0,1): offset 9

address for a(0,2): offset 10

address for a(1,0): offset 11

etc.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

dblock —> '['
 { Stack.push(offset); }
 declaration-list ']'
 { offset=Stack.pop(); }

{ [integer : x , y]

 { [real : x , z] … … }

 { [Boolean : y ; character : z]

 … …
 }

}

dblocks (6.3.5 and 6.3.6)
records (in separate symbol table), sequence of declarations at start of sblock

integer: x

integer: y

Since declarations must be gathered together at
the start of an sblock, and cannot themselves be

directly nested: keep running offset, but remember old
offset when entering embedded scope.

of
fs

et
 =

 0

of
fs

et
 =

 4

of
fs

et
 =

 8

of
fs

et
 =

 8

push offset = 8 onto stack

of
fs

et
 =

 1
6

of
fs

et
 =

 2
4

pop offset = 8 from stack
push offset = 8 onto stack

of
fs

et
 =

 9

of
fs

et
 =

 1
0

pop offset = 8 from stack

integer: x

integer: y

real: x

real: z

integer: x

integer: y

Boolean: y

character: z

of
fs

et
 =

 8
Scopes

