
CSE443
Compilers
Dr. Carl Alphonce

alphonce@buffalo.edu
343 Davis Hall

Phases of
a

compiler

Figure 1.6,
page 5 of text

Intermediate
Representation (IR):

specification
and

generation

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

dblock —> '['
 { Stack.push(offset); }
 declaration-list ']'
 { offset=Stack.pop(); }

{ [integer : x , y]

 { [real : x , z] … … }

 { [Boolean : y ; character : z]

 … …
 }

}

dblocks (6.3.5 and 6.3.6)
records (in separate symbol table), sequence of declarations at start of sblock

integer: x

integer: y

Since declarations must be gathered together at
the start of an sblock, and cannot themselves be

directly nested: keep running offset, but remember old
offset when entering embedded scope.

of
fs

et
 =

 0

of
fs

et
 =

 4

of
fs

et
 =

 8

of
fs

et
 =

 8

push offset = 8 onto stack

of
fs

et
 =

 1
6

of
fs

et
 =

 2
4

pop offset = 8 from stack
push offset = 8 onto stack

of
fs

et
 =

 9

of
fs

et
 =

 1
0

pop offset = 8 from stack

integer: x

integer: y

real: x

real: z

integer: x

integer: y

Boolean: y

character: z

of
fs

et
 =

 8
Scopes

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

dblock —> '['
 { Env.push(st); st = new Env(); Stack.push(offset); offset = 0; }
 declaration-list ']'
 { dblock.type=record(st); dblock.width=offset; st=Env.pop(); offset=Stack.pop(); }

{ (integer : x , y)

 { (real : x , z) … … }

 { (Boolean : y ; character : z)

 … …
 }

}

dblocks (6.3.5 and 6.3.6)
records (in separate symbol table), sequence of declarations at start of sblock

integer: x

integer: y

Since declarations must be gathered
together at the start of an sblock, and cannot themselves be directly nested,

we can do better:

of
fs

et
 =

 0

of
fs

et
 =

 4

of
fs

et
 =

 8

of
fs

et
 =

 8

push offset = 8 onto stack

of
fs

et
 =

 1
6

of
fs

et
 =

 2
4

pop offset = 8 from stack
push offset = 8 onto stack

of
fs

et
 =

 9

of
fs

et
 =

 1
0

pop offset = 8 from stack

AT RUNTIME

of
fs

et
 =

 8

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

dblock —> '['
 { Env.push(st); st = new Env(); Stack.push(offset); offset = 0; }
 declaration-list ']'
 { dblock.type=record(st); dblock.width=offset; st=Env.pop(); offset=Stack.pop(); }

{ (integer : x , y)

 { (real : x , z) … … }

 { (Boolean : y ; character : z)

 … …
 }

}

dblocks (6.3.5 and 6.3.6)
records (in separate symbol table), sequence of declarations at start of sblock

integer: x

integer: y

Since declarations must be gathered
together at the start of an sblock, and cannot themselves be directly nested,

we can do better:

of
fs

et
 =

 0

of
fs

et
 =

 4

of
fs

et
 =

 8

of
fs

et
 =

 8

push offset = 8 onto stack

of
fs

et
 =

 1
6

of
fs

et
 =

 2
4

pop offset = 8 from stack
push offset = 8 onto stack

of
fs

et
 =

 9

of
fs

et
 =

 1
0

pop offset = 8 from stack

integer: x

integer: y

real: x

real: z

AT RUNTIME

of
fs

et
 =

 8

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

dblock —> '['
 { Env.push(st); st = new Env(); Stack.push(offset); offset = 0; }
 declaration-list ']'
 { dblock.type=record(st); dblock.width=offset; st=Env.pop(); offset=Stack.pop(); }

{ (integer : x , y)

 { (real : x , z) … … }

 { (Boolean : y ; character : z)

 … …
 }

}

dblocks (6.3.5 and 6.3.6)
records (in separate symbol table), sequence of declarations at start of sblock

integer: x

integer: y

Since declarations must be gathered
together at the start of an sblock, and cannot themselves be directly nested,

we can do better:

of
fs

et
 =

 0

of
fs

et
 =

 4

of
fs

et
 =

 8

of
fs

et
 =

 8

push offset = 8 onto stack

of
fs

et
 =

 1
6

of
fs

et
 =

 2
4

pop offset = 8 from stack
push offset = 8 onto stack

of
fs

et
 =

 9

of
fs

et
 =

 1
0

pop offset = 8 from stack

AT RUNTIME

of
fs

et
 =

 8

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

dblock —> '['
 { Env.push(st); st = new Env(); Stack.push(offset); offset = 0; }
 declaration-list ']'
 { dblock.type=record(st); dblock.width=offset; st=Env.pop(); offset=Stack.pop(); }

{ (integer : x , y)

 { (real : x , z) … … }

 { (Boolean : y ; character : z)

 … …
 }

}

dblocks (6.3.5 and 6.3.6)
records (in separate symbol table), sequence of declarations at start of sblock

integer: x

integer: y

Since declarations must be gathered
together at the start of an sblock, and cannot themselves be directly nested,

we can do better:

of
fs

et
 =

 0

of
fs

et
 =

 4

of
fs

et
 =

 8

of
fs

et
 =

 8

push offset = 8 onto stack

of
fs

et
 =

 1
6

of
fs

et
 =

 2
4

pop offset = 8 from stack
push offset = 8 onto stack

of
fs

et
 =

 9

of
fs

et
 =

 1
0

pop offset = 8 from stack

integer: x

integer: y

Boolean: y

character: z

AT RUNTIME

of
fs

et
 =

 8

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

dblock —> '['
 { Env.push(st); st = new Env(); Stack.push(offset); offset = 0; }
 declaration-list ']'
 { dblock.type=record(st); dblock.width=offset; st=Env.pop(); offset=Stack.pop(); }

{ (integer : x , y)

 { (real : x , z) … … }

 { (Boolean : y ; character : z)

 … …
 }

}

dblocks (6.3.5 and 6.3.6)
records (in separate symbol table), sequence of declarations at start of sblock

integer: x

integer: y

Since declarations must be gathered
together at the start of an sblock, and cannot themselves be directly nested,

we can do better:

of
fs

et
 =

 0

of
fs

et
 =

 4

of
fs

et
 =

 8

of
fs

et
 =

 8

push offset = 8 onto stack

of
fs

et
 =

 1
6

of
fs

et
 =

 2
4

pop offset = 8 from stack
push offset = 8 onto stack

of
fs

et
 =

 9

of
fs

et
 =

 1
0

pop offset = 8 from stack

AT RUNTIME

of
fs

et
 =

 8

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Dealing with alignment

"On many machines,
instructions […] may expect

integers to be aligned, that is, placed at
an address divisible by 4" [p. 428]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Dealing with alignment

{ [Boolean : a ; integer : x ; character c ; real : y]

 { [character : d ; integer : r , s] … }

 { [Boolean : f , g ; real : t ; character h] … }

}

"On many machines,
instructions […] may expect

integers to be aligned, that is, placed at
an address divisible by 4" [p. 428]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Dealing with alignment

{ [Boolean : a ; integer : x ; character c; real : y]

 { [character : d ; integer : r , s] … }

 { [Boolean : f , g ; real : t ; character h] … }

}

Boolean: a

integer: x

character: c

real: y

"On many machines,
instructions […] may expect

integers to be aligned, that is, placed at
an address divisible by 4" [p. 428]

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Dealing with alignment

{ [Boolean : a ; integer : x ; character c; real : y]

 { [character : d ; integer : r , s] … }

 { [Boolean : f , g ; real : t ; character h] … }

}

Boolean: a

integer: x

character: c

real: y

Blocks are
not aligned.

"On many machines,
instructions […] may expect

integers to be aligned, that is, placed at
an address divisible by 4" [p. 428]

A block of size N bytes typically needs be aligned
to an address divisible by N, where N is an integral power of 2 (1, 2,

4, 8)

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Dealing with alignment

{ [Boolean : a ; integer : x ; character c; real : y]

 { [character : d ; integer : r , s] … }

 { [Boolean : f , g ; real : t ; character h] … }

}

Boolean: a

integer: x

character: c

real: y

Blocks are aligned, but
memory wasted to padding.

C will lay fields out in the order listed in the struct
declaration.

4
bytes

4
bytes

8
bytes

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Dealing with alignment

{ [Boolean : a ; integer : x ; character c; real : y]

 { [character : d ; integer : r , s] … }

 { [Boolean : f , g ; real : t ; character h] … }

}

real: y

integer: x

Boolean: a

character: c

Blocks are aligned, no
padding needed here.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Dealing with alignment

{ [Boolean : a ; integer : x ; character c; real : y]

 { [character : d ; integer : r , s] … }

 { [Boolean : f , g ; real : t ; character h] … }

}

real: y

integer: x

Boolean: a

character: c

integer: r

integer: s

character: d

Blocks are aligned,
padding needed before
embedded scope block.

Offsets and alignment
in the project

The offsets for each variable in a scope is stored
in its symbol table entry.

The offsets must respect alignment constraints.

- assume real is aligned to an 8-byte address
boundary

- assume int is aligned to a 4-byte boundary

- assume smaller types can be at any address

- assume reserve returns an address on an 8-byte
boundary

Offsets and alignment
in the project

You may align using padding alone.

You may align using a combination
of re-organization of fields (large
blocks before small blocks) and
padding as necessary.

Compute offsets during processing,
and record in symbol table.

IR: a motivating example

Flow-of-Control (6.3.3)
if (B) then S1 else S2

B.true = newlabel()
B.false = newlabel()
S.next = S1.next = S2.next
S.code = B.code ||
label(B.true) || S1.code ||
gen('goto' S.next) ||
label(B.false) || S2.code

B.code

ifTrue:
goto LS1
ifFalse:
goto LS2

LS1

S1.code

goto END
LS2

S2.code

END

Let's generalize from the
previous concrete example
to one with an arbitrary
Boolean expression B.

We assume that IR
instructions are placed

into an array.

Flow-of-Control (6.3.3)
if (B) then S1 else S2

B.true = newlabel()
B.false = newlabel()
S.next = S1.next = S2.next
S.code = B.code ||
label(B.true) || S1.code ||
gen('goto' S.next) ||
label(B.false) || S2.code

B.code

ifTrue:
goto LS1
ifFalse:
goto LS2

LS1

S1.code

goto END
LS2

S2.code

END

Flow-of-Control (6.3.3)
S -> if (B) then S1

B.true = newlabel()
B.false = S.next = S1.next
S.code = B.code ||
label(B.true) || S1.code

B.code

ifTrue:
goto LS1
ifFalse:

goto END
LS1

S1.code

END

Flow-of-Control (6.3.3)
while (B) then S1

begin = newlabel()
B.true = newlabel()
B.false = S.next
S1.next = begin
S.code = label(begin) ||
B.code || label(B.true) ||
S1.code || gen('goto' begin)

BEGIN

B.code

ifTrue:
goto LS1
ifFalse:

goto END
LS1

S1.code

goto BEGIN
END

Boolean expressions:
value or control flow?

Boolean expressions

Boolean expressions can be evaluated

to determine the flow of control

for their value

6.6.6 Boolean values and jumping code

"S -> id = E; | if (E) S | while (E) S | S S

Nonterminal E governs the flow on
control in S -> while (E) S1. The same
nonterminal E denotes a value in S ->
id = E; […]"

 [p. 408]

6.6.6 Boolean values and jumping code

"Suppose that attribute E.n denotes the
syntax-tree node for an expression E
and that nodes are objects. Let
method jump generate jumping code
at an expression node, and let method
rvalue generate code to compute the
value of the node into a temporary."

 [p. 408]

Value of Boolean expression

"When E appears in S -> while (E) S1,
method jump is called at node E.n
[…]
When E appears in S -> id = E;, method
rvalue is called at node E.n" [p. 408]

Figure 6.42 [p. 409]
"If E has the form E1 + E2, the method call E.n.rvalue() generates
code as discussed in section 6.4." [p. 408]

"E-> E1 + E2
 E.addr = new Temp()
 E.code = E1.code || E2.code || gen(E.addr '=' E1.addr '+' E2.addr)" [p. 379]

"If E has the form E1 && E2 we first generate jumping code for E
and then assign true or false to a new temporary t at the true and
false exits, respectively, from the jumping code." [p. 408]

Translation of: x = a<b && c<d
 ifFalse a < b goto L1
 ifFalse c < d goto L1
 t = true
 goto L2
L1: t = false
L2: x = t

Boolean expressions

Examples: ! X X & Y X | Y

Boolean expressions

Examples: ! X X & Y X | Y
We will do short-circuit evaluation

Boolean expressions

Examples: ! X X & Y X | Y
We will do short-circuit evaluation
For example:
if (X | (Y & Z)) then { A } else { B }

 is translated as

 if X goto LA
 ifFalse Y goto LB
 ifFalse Z goto LB

LA: A
 goto END

LB: B
END: (next instruction)

Boolean expressions
A concrete exercise - how is this translated?

if (r < s | (r = s & 0 < s)) then { A } else { B }

Boolean expressions
A concrete exercise - how is this translated?

if (r < s | (r = s & 0 < s)) then { A } else { B }

Here's a summary of the
Intermediate

Representation (IR) that
we'll be using.

Boolean expressions
A concrete exercise - how is this translated?

if (r < s | (r = s & 0 < s)) then { A } else { B }

Exercise: try to come up
with a suitable translation.

Boolean expressions
A concrete exercise - how is this translated?

if (r < s | (r = s & 0 < s)) then { A } else { B }

This has the same form as
our example:

if (X | (Y & Z)) then { A } else { B }
is translated as

if X goto LA
ifFalse Y goto LB
ifFalse Z goto LB

LA: A
goto END

LB: B
END: (next instruction)

Boolean expressions
A concrete exercise - how is this translated?

if (r < s | (r = s & 0 < s)) then { A } else { B }
if (r < s | (r = s & 0 < s)) then { A } else { B }

This has the same form as
our example:

if (X | (Y & Z)) then { A } else { B }
is translated as

if X goto LA
ifFalse Y goto LB
ifFalse Z goto LB

LA: A
goto END

LB: B
END: (next instruction)

X Y Z

Boolean expressions
A concrete exercise - how is this translated?

if (r < s | (r = s & 0 < s)) then { A } else { B }
if (r < s | (r = s & 0 < s)) then { A } else { B }

This has the same form as our
example:

if (r<s | (Y & Z)) then { A } else { B } is
translated as

if r<s goto LA
ifFalse Y goto LB
ifFalse Z goto LB

LA: A
goto END

LB: B
END: (next instruction)

X Y Z

Boolean expressions

This has the same form as our
example:

if (r<s | (r=s & Z)) then { A } else { B }
is translated as

if r<s goto LA
ifFalse r=s goto LB
ifFalse Z goto LB

LA: A
goto END

LB: B
END: (next instruction)

A concrete exercise - how is this translated?

if (r < s | (r = s & 0 < s)) then { A } else { B }
if (r < s | (r = s & 0 < s)) then { A } else { B } X Y Z

Boolean expressions

This has the same form as our
example:

if (r<s | (r=s & 0<s)) then { A } else { B }
is translated as

if r<s goto LA
ifFalse r=s goto LB
ifFalse 0<s goto LB

LA: A
goto END

LB: B
END: (next instruction)

A concrete exercise - how is this translated?

if (r < s | (r = s & 0 < s)) then { A } else { B }
if (r < s | (r = s & 0 < s)) then { A } else { B } X Y Z

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Backpatching

Allows jump targets to be filled in during
a one-pass parse.

When (forward) jumps are needed, keep a
list of where the addresses need to be
inserted.

Once address is known, go back and fill
in the address ("backpatching").

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

6.7 Backpatching
"For specificity, we generate instructions
into an instruction array, and labels will be
indices into this array." [p. 410]

We have an instruction pointer (the first
available index in the array), called
nextinstr.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

6.7 Backpatching
page 410

makelist(i) creates a new list containing only i,
an index into the array of instructions; makelist
returns a pointer to the newly created list.

merge(p1,p2) concatenates the lists pointed to by
p1 and p2, and returns a pointer to the
concatenated list.

backpatch(p,i) inserts i as the target label for each
of the instructions on the list pointed to by p

