
 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

CSE443
Compilers
Dr. Carl Alphonce

alphonce@buffalo.edu
343 Davis Hall

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Phases of
a

compiler

Figure 1.6,
page 5 of text

Intermediate
Representation (IR):

specification
and

generation

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

backpatching
if

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

6.7.3 Backpatching Flow-of-Control statements

S -> if (B) M1 S1
N else M2 S2

backpatch(B.truelist, M1.instr)
backpatch(B.falselist, M2.instr)

temp = merge(S1.nextlist, N.nextlist)
S.nextlist = merge(temp, S2.nextlist)

M -> 𝜀 M.instr = nextinstr

N -> 𝜀
N.nextlist = makelist(nextinstr)

gen('goto _')

B

true

false

S.next

M2.instr S2

M1.instr S1 N

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Example 6.24 - extended
if (x < 100 || x > 200 && x != y) S1 else S2

Let's extend the Boolean expression
example from part 1 by embedding that
expression into an if-then-else statement

(using the textbook syntax, not alpha
syntax).

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Example 6.24 - extended
if (x < 100 || x > 200 && x != y) S1 else S2

100: if x < 100 goto ___
101: goto 102
102: if x > 200 goto 104
103: goto ___
104: if x != y goto ___
105: goto ___

truelist = {100,104}
falselist = {103,105}

Let's remember where we left off…

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Example 6.24 - extended
if (x < 100 || x > 200 && x != y) S1 else S2

100: if x < 100 goto ___
101: goto 102
102: if x > 200 goto 104
103: goto ___
104: if x != y goto ___
105: goto ___
106: instruction for S1
107: instruction for S1
108: instruction for S1
109: instruction for S1
110: instruction for S1
111: goto ___
112: instruction for S2
113: instruction for S2
114: instruction for S2

truelist = {100,104}
falselist = {103,105}

In the example above
we have not spelled

out what S1 and S2 are.

Let's assume S1
requires 5 instructions

and S2 requires 3
instructions.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Example 6.24 - extended
if (x < 100 || x > 200 && x != y) S1 else S2

100: if x < 100 goto 106
101: goto 102
102: if x > 200 goto 104
103: goto 112
104: if x != y goto 106
105: goto 112
106: instruction for S1
107: instruction for S1
108: instruction for S1
109: instruction for S1
110: instruction for S1
111: goto ___
112: instruction for S2
113: instruction for S2
114: instruction for S2
115:

truelist = {100,104}
falselist = {103,105}

nextlist = {111}

Embedded in the
context of this if-

then-else statement we
can backpatch truelist
and falselist from the
Boolean expression,
and we introduce

nextlist.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

backpatching
while

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

6.7.3 Backpatching Flow-of-Control statements

S -> while (B) S1

begin = newlabel()
B.true = newlabel()
B.false = S.next()
S1.next = begin

S.code = label(begin) || B.code || label(B.true)
|| S1.code || gen('goto' begin)

S -> while M1
(B) M2 S1

backpatch(S1.nextlist, M1.instr)
backpatch(B.truelist, M2.instr)

S.nextlist = B.falselist
gen('goto' M1.instr)

The end-of-rule actions for a while statement are shown
on the next slide.

Exercise:
Extend example 6.24 as a while statement where the body

of the while requires 5 instructions.

while (x < 100 || x > 200 && x != y) S1

Show how backpatching works in the instruction array.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

6.7.3 Backpatching Flow-of-Control statements

S -> while M1
(B) M2 S1

backpatch(S1.nextlist, M1.instr)
backpatch(B.truelist, M2.instr)

S.nextlist = B.falselist
gen('goto' M1.instr)

M -> 𝜀 M.instr = nextinstr

B

true

false

S.nextM1.instr M2.instr

S1

