CSE 443 Compilers

Dr. Carl Alphonce alphonce@buffalo.edu 343 Davis Hall

(C) 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Phases

Reminder:

Friday is a workshop day

- Come ready to work
- Ensure all team members are present
- Bring along a list of questions

function calls

Function calls

int foo(int x, int y) \{ int temp;
temp $=2 * x+3 * y$; return temp;
\}

What happens during function call?
int main() \{

$$
\begin{aligned}
& \text { int } a=\cdots \\
& \text { int } b=\cdots \\
& \text { int } c=\text { foo }(a * b, a+b) ;
\end{aligned}
$$

\}

Function calls

- Basic form: id(e1,e2,...ek)

Function calls

- Basic form: id (e1,e2,...ek)
- General form: assignable (e1,e2,.., ck)
- If f is a function, $g(4,5)$ yields a function, and rh yields a function, then the following are legal:

$$
f(3) \quad g(4,6)(3) \quad r \operatorname{hn}(3)
$$

© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

How is function call carried out?

1. evaluate each of the argument expressions
2. mark the resulting values as parameters
3. invoke the function

How is function call carried out?

1. evaluate each of the argument expressions use compiler-generated temporaries
2. mark the resulting values as parameters
3. invoke the function
use 'call(f, n)' IR instruction: f is a function
n is arily of function $\#$ of parameters
(02020 Carl Alpnonce-keproauctook of thus material is prontvued without tine authors consent

examples

$f(x+1)$

examples

$f(x+1)$

Remember that the function call has structure.

examples

examples

$f(x+1)$
$t_{1}=x+1$
param t_{1}

(0) 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

examples

$f(x+1)$
$11=x+1$
param C 1
$k_{2}=\operatorname{call}(f, 1)$

Call the function. The second argument of the call indicates the arily of the function (ie. how many parameters it has)
(C) 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

examples

$f(x+1)$
$f(x+1,2 * y)$
$61=x+1$
param E 1
$E 2=\operatorname{call}(f, 1)$

examples

$$
\begin{aligned}
& f(x+1) \\
& t 1=x+1 \\
& \text { param } t 1 \\
& t 2=\operatorname{call}(f, 1)
\end{aligned}
$$

examples

$$
\begin{aligned}
& f(x+1) \\
& t 1=x+1 \\
& \text { param t1 } \\
& t 2=\operatorname{call}(f, 1)
\end{aligned}
$$

$$
f(x+1,2 * y)
$$

examples

$$
\begin{aligned}
& f(x+1) \\
& t 1=x+1 \\
& \text { param } t 1 \\
& t 2=\operatorname{call}(f, 1)
\end{aligned}
$$

$2+2,+\infty$

param E1
param E1

Evaluate the second argument expression.
© 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

examples

$$
\begin{array}{ll}
f(x+1) & f(x+1,2 * y) \\
\epsilon_{1}=x+1 & \ell 1=x+1 \\
\text { param } \ell 1 & \text { param } k 1 \\
\epsilon_{2}=\operatorname{call}(f, 1) & t 2=2 * y \\
& \text { param } k 2
\end{array}
$$

Mark the resulk as a parameter.

examples

$$
\begin{array}{ll}
f(x+1) & f(x+1,2 * y) \\
t 1=x+1 & t 1=x+1 \\
\text { param t1 } & \text { param } t 1 \\
t 2=\operatorname{call}(f, 1) & t 2=2 * y \\
& \text { param } t 2 \\
& t 3=\operatorname{call}(f, 2)
\end{array}
$$

Call the function.
$2 \times 2 x+2 y+\infty$

$$
\left.\begin{array}{ll}
f(x+1) & f(x+1,2 * y) \\
k 1=x+1 & t 1=x+1 \\
\text { param } k 1 & \text { param } t 1 \\
t 2=2 * y \\
\text { param } k 2 \\
t 3=\operatorname{call}(f, 2)
\end{array}\right)
$$

exercise

$\cos x+3+\infty$

$$
\begin{array}{ll}
f(x+1) & f(x+1,2 * y) \\
k 1=x+1 & t 1=x+1 \\
\text { param } t 1 \\
t 2=\operatorname{call}(f, 1) & \text { param } k 1 \\
t 2=2 * y \\
\text { param } t 2 \\
t 3=\operatorname{call}(f, 2)
\end{array}, f(g(3 * z), h(a+b, a * b))
$$

$f(x+1)$
$k 1=x+1$
param Cl 1

$$
\mathrm{c}_{2}=\operatorname{call}(f, 1)
$$

$f(x+1,2 * y)$
$k 1=x+1$
param $E 1$
$62=2 * y$
param CR

$$
\mathrm{E} 3=\operatorname{call}(f, 2)
$$

$$
g(3 * z)
$$

$$
1
$$

$$
4
$$

...view this as a function call in isolation.
$\cos \operatorname{Hyy}+2 \rightarrow$
$f(x+1)$

$$
f(x+1,2 * y)
$$

$g(3 * z)$

$$
k 1=x+1
$$

$\mathrm{k} 1=x+1$

$$
\mathrm{k} 1=3 * z
$$

param $\mathrm{E1}$
param E 1

$$
\mathrm{E} 2=\operatorname{call}(f, 1)
$$

$$
t 2=2 * y
$$

param E 2

$$
\mathrm{t} 3=\operatorname{call}(f, 2)
$$

...first compute the argument value...
examples
$f(x+1)$
$f(x+1,2 * y)$
$g(3 * z)$
$k 1=x+1$
param E1

$61=x+1$
param E_{1}
$t 2=2 * y$
param $E 2$
$t_{3}=\operatorname{call}(f, 2)$

$$
k 1=3 * z
$$

param El $\mathrm{E}_{2}=\operatorname{call}(9,1)$

examples
$f(x+1)$

$$
11=x+1
$$

param E1

$$
t_{2}=\operatorname{call}(f, 1)
$$

$f(x+1,2 * y)$
$\mathrm{t} 1=x+1$
param E 1

$$
t 2=2 * y
$$

param EL
$f(g(3 * z), h(a+b, a * b))$
$t_{1}=3 * z$ param El 1 $\mathrm{t}_{2}=\operatorname{call}(\mathrm{g}, 1)$

This Eranslation will happen automatically due to the recursive structure of the function call for $f \ldots$
examples
$f(x+1)$

$$
k 1=x+1
$$

param 61

$$
\mathrm{k} 2=\operatorname{calL}(f, 1)
$$

$$
f(x+1,2 * y)
$$

$k 1=x+1$
param E1
$t 2=2 * y$
param E 2
$t 3=\operatorname{call}(f, 2)$

$$
f(g(3 * z), h(a+b, a * b))
$$

$$
k_{1}=3 * z
$$

param $\mathrm{E1}$ $E 2=\operatorname{call}(9,1)$ param 62

© 2022 Carl Alphonce - Reproduction of this Material ismpxekittted without the author's consent
examples

$f(x+1)$	$f(x+1,2 * y)$	$f(g(3 * z), h(a+b, a * b))$
$k 1=x+1$	$k 1=x+1$	$t 1=3 * z$
param $k 1$	param $k 1$	param $k 1$
$k 2=\operatorname{call}(f, 1)$	$t 2=2 * y$	param $k 2$

examples
$f(x+1)$

$$
61=x+1
$$

param $\mathrm{E1}$

$$
f(x+1,2 * y)
$$

$61=x+1$
param E1

$$
t 2=2 * y
$$

param E 2
$t 3=\operatorname{call}(f, 2)$

$$
f(g(3 * z), h(a+b, a * b))
$$

$$
t_{1}=3 * z
$$

param 61

$$
E 2=\operatorname{call}(9,1)
$$

param 62

$$
t 3=a+b
$$

expression
© 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent
$2 x+2 y+2$

$$
\begin{array}{lll}
f(x+1) & f(x+1,2 * y) & f(g(3 * z), h(a+b, a * b)) \\
t 1=x+1 & t 1=x+1 & t 1=3 * z \\
\text { param t1 } & \text { param } t 1 & \text { param } t 1 \\
& t 2=2 * y & t 2=\operatorname{call}(f, 1) \\
\text { param } t 2 & \text { param } t 2 \\
t 3=\operatorname{call}(f, 2) & t 3=a+b \\
\text { param } t 3
\end{array}
$$

© 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent
$2 x \cos \mathrm{y}+5$
$f(x+1)$

$$
61=x+1
$$

param $\mathrm{E1}$

$$
f(x+1,2 * y)
$$

$61=x+1$
param E1

$$
t 2=2 * y
$$

param E 2
$t 3=\operatorname{call}(f, 2)$

$$
f(g(3 * z), h(a+b, a * b))
$$

$$
t_{1}=3 * z
$$

param 61

$$
E 2=\operatorname{call}(9,1)
$$

param E 2

$$
63=a+b
$$

param t 3

$$
k 4=a * b
$$

examples

$$
\begin{aligned}
& f(x+1) \\
& f(x+1,2 * y) \\
& f(g(3 * z), h(a+b, a * b)) \\
& 61=x+1 \\
& 61=x+1 \\
& t 1=3 * z \\
& \text { param E1 } \\
& \text { param E1 } \\
& 62=\operatorname{call}(f, 1) \\
& t 2=2 * y \\
& \text { param } \mathrm{E} 2 \\
& t 3=\operatorname{call}(f, 2) \\
& t 4=a * b \\
& \text { param } t 4 \\
& \mathrm{ts}=\operatorname{call}(h, 2)
\end{aligned}
$$

(C) 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent
$\cos x+2 y+5$

$$
\begin{aligned}
& f(x+1) \\
& k 1=x+1 \\
& t 1=x+1 \\
& t 1=3 * z \\
& \text { para E1 } \\
& t 2=\operatorname{call}(f, 1) \\
& \text { pram E1 } \\
& t 2=2 * y \\
& \text { para } \mathrm{E} 2 \\
& t 3=\operatorname{call}(f, 2) \\
& \text { parameter marking } \\
& \text { and call }
\end{aligned}
$$

© 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Memory Organizalion

Memory organizacion

stack
free memory
heap
BSS
data
code

(C) 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Memory organization

© 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Memory organization

© 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Memory organization

(C) 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Memory organization

© 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Memory organization

(C) 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Memory organization

slack
free memory
heap
ES
data
code

© 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Memory organization

© 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Memory organization

$$
\begin{aligned}
& \text { slack grows } \\
& \text { towards heap }
\end{aligned}
$$

(C) 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Memory organization

© 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Memory organization

These regions are handled dynamically (ie. as runtime)
© 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Memory organization

stack
free memory
heap
ES
data
code

Heap allocation: reserve

 \nLeftarrow release© 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

Memory organization

© 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

stack frame organization

aclual paramelers (arguments)
relurned value
conkrol link (dynamic link)
access link (static link)
saved machine skakus (return address) Local data temporaries

© 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent

