
 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

CSE443
Compilers
Dr. Carl Alphonce

alphonce@buffalo.edu
343 Davis Hall

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Phases of
a compiler

Figure 1.6,
page 5 of text

Intermediate
Representation (IR):

specification
and

generation

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

temporaries

Stack frame organization

returned value

control link
(dynamic link)

access link
(static link)

saved machine status
(return address)

local data

Initialized
by caller, used

by callee.

May be in CPU
registers.

actual parameters
(arguments)

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

temporaries

Stack frame organization

control link
(dynamic link)

access link
(static link)

saved machine status
(return address)

local data

Initialized
by callee, read

by caller.

May be in a
CPU register.

actual parameters
(arguments)

returned value

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

temporaries

Stack frame organization

access link
(static link)

saved machine status
(return address)

local data

The address
of the caller's
invocation

record (stack
frame).

actual parameters
(arguments)

returned value

control link
(dynamic link)

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

temporaries

Stack frame organization

saved machine status
(return address)

local data

Used to
achieve static

scope for nested
function definitions.

Our language does not
use this.

Scheme/ML do.

actual parameters
(arguments)

returned value

control link
(dynamic link)

access link
(static link)

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

temporaries

Stack frame organization

local data

Information
needed to restore
machine to state at

function call,
including the return
address (the value of
the Program Counter
at the time of the

call).

actual parameters
(arguments)

returned value

control link
(dynamic link)

access link
(static link)

saved machine status
(return address)

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

temporaries

Stack frame organization

saved machine status
(return address)

local data

Space for local
variables.

actual parameters
(arguments)

returned value

control link
(dynamic link)

access link
(static link)

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Stack frame organization

saved machine status
(return address)

local data

Space for
temporary variables,
and variable-length

local data

Temporaries may be
in CPU registers.

actual parameters
(arguments)

returned value

control link
(dynamic link)

access link
(static link)

temporaries

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

7.2.3 Calling Sequence

What happens during a function call?

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

saved machine status

local data

actual parameters

returned value

control link

access link

temporaries

caller's
invocation

record
top_sp

top

Prior to function call.

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

7.2.3 Calling Sequence

"Procedure calls are implemented by
what are known as calling sequences,
which consist of code that allocates
an activation record on the stack and
enters information into its fields."

[p. 436]

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

saved machine status

local data

actual parameters

returned value

control link

access link

temporaries

saved machine status

local data

actual parameters

returned value

control link

access link

temporaries

caller's
invocation

record

callee's
invocation

record
top_sp

top

During function call.

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

7.2.3 Calling Sequence

"A return sequence is similar code to
restore the state of the machine so the
calling procedure can continue its
execution after the call."

[p. 436]

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

saved machine status

local data

actual parameters

returned value

control link

access link

temporaries

…

…

…

returned value

…

…

…

caller's
invocation

record

After function call.

top_sp

top

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Caller vs Callee
responsibilities

"In general, if a procedure is called
from n different points, then the
portion of the calling sequence
assigned to the caller is generated n
times. However, the portion assigned
to the callee is generated only once."

[p. 436]

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Typical calling sequence [p. 437]

"1. The caller evaluates the actual
parameters."

Recall:

formal parameter == parameter

actual parameter == argument

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

saved machine status

local data

actual parameters

returned value

control link

access link

temporaries

caller's
invocation

record
top_sp

top

Prior to function call.

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

saved machine status

local data

actual parameters

returned value

control link

access link

temporaries

actual parameters

caller's
invocation

record
top_sp

top Caller writes
arguments (actual

parameters) past the
end of its own

invocation record.

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Typical calling sequence [p. 437]

"2. The caller stores a return address
and the old value of top_sp into the
callee's activation record. The caller
then increments top_sp […] top_sp is
moved past the caller's local data and
temporaries and the callee's
parameters and status fields."

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

saved machine status

local data

actual parameters

returned value

control link

access link

temporaries

actual parameters

returned value

caller's
invocation

record
top_sp

top
Caller knows the

offset of the eventual
returned value. When

callee returns the
caller will look at this

location for the
returned value.

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Typical calling sequence [p. 437]

"2. The caller stores a return address
and the old value of top_sp into the
callee's activation record. … "

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

saved machine status

local data

actual parameters

returned value

control link

access link

temporaries

actual parameters

returned value

control link

caller's
invocation

record
top_sp

top
The caller stores its
stack pointer here.

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

saved machine status

local data

actual parameters

returned value

control link

access link

temporaries

actual parameters

returned value

top_sp

caller's
invocation

record
top_sp

top

The caller stores
its stack pointer
here. When the

callee finishes the
stack pointer's value
will be reset to this

value, thereby
restoring the caller's
invocation record as
the active one (the
one on top of the

stack).

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Typical calling sequence [p. 437]

"2. The caller stores a return address
and the old value of top_sp into the
callee's activation record. The caller
then increments top_sp […] top_sp is
moved past the caller's local data and
temporaries and the callee's
parameters and status fields."

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

saved machine status

top_sp

Move top_sp

saved machine status

local data

actual parameters

returned value

control link

access link

temporaries

…

actual parameters

returned value

access link

…

caller's
invocation

record

top_sp

top

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Typical calling sequence [p. 437]

"3. The callee saves the register values
and other status information."

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

saved machine status

local data

actual parameters

returned value

control link

access link

temporaries

PC + machine status

actual parameters

returned value

access link

caller's
invocation

record

top

top_sp

Write the return
address, the current
value of the Program
Counter (PC), into the
saved machine status.

When the callee
finishes execution will

resume with the
address pointed to

by this saved
address.

…

…

top_sp

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

PC + machine status

top_sp

When control
transfers to the

callee, the top_sp and
top are updated.

Callee writes local
data and temporaries
into its invocation

record.

saved machine status

local data

actual parameters

returned value

control link

access link

temporaries

local data

actual parameters

returned value

access link

temporaries

caller's
invocation

record

callee's
invocation

record
top_sp

top

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

PC + machine status

top_sp

If the number of
arguments can vary
from call to call

(e.g. printf) then the
caller writes the
arguments to the

"actual parameters"
 area, as well as

information about the
number of

arguments to the
status area

saved machine status

local data

actual parameters

returned value

control link

access link

temporaries

local data

actual parameters

returned value

access link

temporaries

caller's
invocation

record

callee's
invocation

record
top_sp

top

 2022 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

PC + machine status

top_sp

If the callee
has variable

length local data
(e.g. local arrays

whose size is
determined by the

value of a parameter)
then the arrays are

allocated space at the
end of the invocation
record, and pointers
to those arrays are

stored in the
"locals" block.

saved machine status

local data

actual parameters

returned value

control link

access link

temporaries

local data

actual parameters

returned value

access link

temporaries

caller's
invocation

record

callee's
invocation

record
top_sp

top

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Relocatable object code

Compiler produces relocatable object code:
addresses are not absolute, but relative to
known boundaries (e.g. Stack Pointer, start of
record, Program Counter).

Linker combines object code files into an
executable file, in which static relative addresses
are made absolute (in virtual address space).

Loader copies contents of executable file into
memory and starts execution.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Relocatable object code

Compiler produces relocatable object code:
addresses are not absolute, but relative to
known boundaries (e.g. Stack Pointer, start of
record, Program Counter).

Linker combines object code files into an
executable file, in which static relative addresses
are made absolute (in virtual address space).

Loader copies contents of executable file into
memory and starts execution.

Leave relative
offsets alone during

translation.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Target Architecture
Code Generation

We will generate x86-64 assembly

Examples will not always show
x86-64 assembly

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Desirable characteristics
of generated code:

correctness (this is non-negotiable)

small execution time

small code size

small power consumption

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Desirable characteristics
of generated code:

correctness (this is non-negotiable)

small execution time

small code size

small power consumption

Associate costs
with each instruction,

then "minimize" (lower)
overall cost, with some
balance since execution
time and code size can

be in conflict.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Significant tasks of code generator

instruction selection

register allocation and assignment

instruction ordering

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Significant tasks of code generator

instruction selection

register allocation and assignment

instruction ordering

Which variables are kept in
registers?

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Significant tasks of code generator

instruction selection

register allocation and assignment

instruction ordering

Which specific register holds
which value?

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Significant tasks of code generator

instruction selection

register allocation and assignment

instruction ordering

E.g. to minimize the number
of registers needed.

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Simple generation
strategy vs. code size

If we generate code for each
intermediate code instruction in
isolation and string the results
together the result may include
redundant instructions

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Small example [p. 509]

Consider:
x = y + z

This might be translated as:
LD R0, y
ADD R0, R0, z
ST x, R0

<— load the value of y into register R0

<— put into R0 the result of
 adding R0 and the value of z

<— store the value of register R0 to x

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Larger example [p. 509]

Consider applying the same template to a
larger example:

a = b + c
d = a + e

This might be translated as:
LD R0, b
ADD R0, R0, c
ST a, R0
LD R0, a
ADD R0, R0, e
ST d, R0

 2020 Carl Alphonce - Reproduction of this material is prohibited without the author's consent©

Larger example [p. 509]

Consider applying the same template to a
larger example:

a = b + c
d = a + e

This might be translated as:
LD R0, b
ADD R0, R0, c
ST a, R0
LD R0, a
ADD R0, R0, e
ST d, R0

This instruction is
redundant: it is loading into
R0 the value that is already

there.

